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Problems and solutions

Problem 1. Let ABC be a triangle and Q a point on the internal angle bisector of ∠BAC. Circle ω1 is
circumscribed to triangle BAQ and intersects the segment AC in point P 6= C. Circle ω2 is circumscribed to
the triangle CQP . Radius of the cirlce ω1 is larger than the radius of ω2. Circle centered at Q with radius QA
intersects the circle ω1 in points A and A1. Circle centered at Q with radius QC intersects ω1 in points C1 and
C2. Prove ∠A1BC1 = ∠C2PA.

(Matija Bucić)

Solution. From the conditions in the problem we have |QC1| = |QC2| and |QA| = |QA1|. Also as Q lies on the internal
angle bisector of∠CAB we have ∠PAQ = ∠QAB =⇒ |QP | = |QB|.
Now noting from this that pairs of points A and A1, C1 and C2, B and P are symmetric in line QS1, where S1 is the
center of ω1. We can directly conclude ∠A1BC1 = ∠APC2 as these is the image of the angle in symmetry.
This way we have avoided checking many cases but there are many ways to prove this problem.

Problem 2. Let S be the set of positive integers. For any a and b in the set we have GCD(a, b) > 1. For any
a, b and c in the set we have GCD(a, b, c) = 1. Is it possible that S has 2012 elements?

GCD(x, y) and GCD(x, y, z) stand for the greatest common divisor of the numbers x and y and numbers x, y
and z respectively.

(Ognjen Stipetić)

Solution. There is such a set.
We will construct it in the following way: Let a1, a2, . . . a2012 equal to 1 in the begining. Then we take 2012·2011

2
different

prime numbers, and assign a different prime to every pair ai, aj (where i 6= j) and multiply them with this assigned
number. (I.e. for the set of 4 elements we can take 2, 3, 5, 7, 11, 13, so S would be {2 · 3 · 5, 2 · 7 · 11, 3 · 7 · 13, 5 · 11 · 13}.
The construction works as we have multiplied any pair of numbers with some prime so the condition gcd(a, b) > 1 is
satisfied for all a, b. As well as each prime divides exactly 2 primes so no three numbers a, b, c can have gcd(a, b, c) > 1.

Problem 3. Do there exist positive real numbers x, y and z such that

x4 + y4 + z4 = 13,

x3y3z + y3z3x+ z3x3y = 6
√
3,

x3yz + y3zx+ z3xy = 5
√
3?

(Matko Ljulj)

Solution. Let’s assume that such x, y, z exist. Let a = x2, b = y2, c = z2. As well, let A = a+ b+ c, B = ab+ bc+ ca,
C = abc. The upper system can be rewritten as:

a2 + b2 + c2 = 13 =⇒ (a+ b+ c)2 − 2(ab+ bc+ ca) = 13 =⇒ A2 − 2B = 13

xyz(x2y2 + y2z2 + z2x2) = 6
√
3 =⇒

√
CB = 6

√
3

xyz(x2 + y2 + z2) = 5
√
3 =⇒

√
CA = 5

√
3.
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We can note that a, b and c are positive reals (They are not negaitve from the definition; and as
√
CB = 6

√
3 they are

not 0).
When we cancel out

√
C from the second and third equation we get 5B = 6A. When we express B in terms of A and

put int the first equation we get a quadratic equation

A2 − 12

5
A− 13 = 0.

with solutions 5 and − 13
5
. As a, b and c are positive reals, and the sum must be positive so their sum is poistive real

number as well. So A = 5 =⇒ B = 6 =⇒ C = 3.
By AM-GM inequality we get

ab+ bc+ ca

3
>

3
√
ab · bc · ca

⇐⇒ B

3
>

3
√
C2

⇐⇒ 6

3
> 3
√
9 /3

⇐⇒ 8 > 9.

so we reached a contradiction, thus such x, y, z don’t exist.

Problem 4. Let k be a positive integer. At the European Chess Cup every pair of players played a game in
which somebody won (there were no draws). For any k players there was a player against whom they all lost,
and the number of players was the least possible for such k. Is it possible that at the Closing Ceremony all
the participants were seated at the round table in such a way that every participant was seated next to both a
person he won against and a person he lost against.

(Matija Bucić)

Solution. The answer is yes.
In this problem we could use graph theory terminology but as this problem was intended for younger students we shall
avoid mentioning any specific graph theory terms.
Let’s take the largest number of participants whom we can seat around the table as desired. If we have seated all the
participants we are done. Otherwise there is a person not seated at the table. As well there is at least one person seated
at the table so let’s name it a.
WLOG we can assume that for each person seated at the table to his right there is a person he won against and to his
left a person he lost against.
Denote by W the set of people who won against person a, and are not seated at the table. Similarly, let L denote the
set of all people who lost against a and are not seated at the table.
Let’s consider any person p from W . If person p lost against the left neighbour of a, then we could seat p in between a
and his (former) left neighbour, which is a contradiction with the assumption that we have seated the maximal possible
number of people. So p won against the left neighbour of a. Using similar deduction we conclude that p won against the
next left neighbour as well etc. So p must have won against everybody seated at the table.
In the same way if we consider any person q from L and consider the right neighbour of a, we can conclude that q lost
against every person seated at the table.
If some person r from W lost against some person s in L, then instead of seating a we can seat s and r respectively by
which we would reach a contradiction to the number of people seated being maximal.
So we conclude that all the people in W won against all people not in W and all the people in L lost against all people
not in L.
As there is a someone who is not seated either W or L is non-empty. If W is non-empty, we can consider the set W as
an independent chess cup. It is a cup with smaller number of participants but still satisfying problem conditions which
would be the contradiction with the fact that our starting cup is the smallest such cup.
As well if L is non-empty, the smaller cup made by people seated at the table and people in W also satisfies the problem
conditions and gives us a contradiction.
So the only possibility is that both W and L are empty so indeed it is possible to seat everyone at such table.
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Problem 1. For a positive integer m let m? be the product of first m prime numbers.

Determine if there exist positive integers m and n with the following property:

m? = n(n+ 1)(n+ 2)(n+ 3).

(Matko Ljulj)

Solution. Such numbers don’t exist.
Let’s assume the contrary i.e. there are such m and n.
We can note that there is only one prime divisible by 2 and that it 2 itself thus m? isn’t divisble by 4. On the other
hand, the product n(n+1)(n+2)(n+3) is product of 4 consecutive integers so two of them are even making the product
divisble by 4.
Thus equality m? = n(n+ 1)(n+ 2)(n+ 3) gives us a contradiction as LHS is not divisble by 4 while RHS is.

Problem 2. Let P be a point inside a triangle ABC. A line through P parallel to AB meets BC and CA
at points L and F , respectively. A line through P parallel to BC meets CA and BA at points M and D
respectively, and a line through P parallel to CA meets AB and BC at points N and E respectively. Prove

(PDBL) · (PECM) · (PFAN) = 8 · (PFM) · (PEL) · (PDN),

where (XY Z) and (XY ZW ) denote the area of the triangle XY Z and the area of quadrilateral XY ZW .

(Steve Dinh)

Solution.

Let’s denote the areas as on the sketch.
The problem is equivalent to

U · V ·W = X · Y · Z.

Let x and y be lengths of altitudes from I and D in the triangle BID and let a and b be lenghts of sides BI and BD.
We can deduce

X = (PED) =
1

2
· a · y · BC

BA
,

Z = (PIH) =
1

2
· b · x · BA

BC
and
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U = (BID) =
1

2
· a · x =

1

2
· b · y

This gives U2 = X · Z. Analogously we get W 2 = Y · Z and V 2 = X · Y . Multiplying all three equalities we get the
desired equation.

Second solution. Let’s denote the areas of triangles PEL, PFM , PDN as PA, PB , PC respectively and let’s denote the
areas of quadrilaterals PFAN , PDBL, PECM as QA, QB , QC respectively. We want to prove QAQBQC = 8PAPBPC .
Triangles PEL, PFM , and PDN are similar to the triangle ABC (they have respective pairs of sides on parallel lines).
Let’s denote the respective similarity coefficients as kA, kB , kC . As triangles PEL, PFM , and PDN are in the interior
of ABC, all those coefficients are less than 1.
Triangle ENB is similar to the triangle ABC. Its similarity coefficient is

EN

AC
=

EF + FN

AC
=

EF

AC
+

FN

AC
= kA + kC .

From all these similarity relations we get area relations. Namely:

PA : PB = (PA : (ABC)) : (PB : (ABC)) =

(
kA
kB

)2

=⇒ PA =

(
kA
kB

)2

PB ,

PC : PB = (PC : (ABC)) : (PB : (ABC)) =

(
kC
kB

)2

=⇒ PC =

(
kC
kB

)2

PB .

Using this we get:

(PA + PC +QB) : PB = (ENB) : (PFM) = (kA + kC)
2 : (kB)

2

=⇒ PA + PC +QB =
k2
A + 2kAkC + k2

C

k2
B

PB =
k2
A

k2
B

PB +
2kAkC
k2
B

PB +
k2
C

k2
B

PB = PA +
2kAkC
k2
B

PB + PC

=⇒ QB =
2kAkC
k2
B

PB .

Similary by the same process applied to FLC and MDA we get QC = 2kBkA

k2
C

PC i QA = 2kCkB

k2
A

PA. Multiplying what
we got we have

QAQBQC =
2kCkB
k2
A

PA
2kAkC
k2
B

PB
2kBkA
k2
C

PC = 8
k2
Ak

2
Bk

2
C

k2
Ak

2
Bk

2
C

PAPBPC = 8PAPBPC ,

Q.E.D.

Problem 3. We are given a combination lock consisting of 6 rotating discs. Each disc consists of digits
0, 1, 2, . . . , 9, in that order (after digit 9 comes 0). Lock is opened by exactly one combination. A move consists
of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is
correct. Discs are initially put in the position 000000, and we know that this combination is not correct.

a) What is the least number of moves necessary to ensure that we have found the correct combination?

b) What is the least number of moves necessary to ensure that we have found the correct combination, if we
know that none of the combinations 000000, 111111, 222222, . . ., 999999 is correct?

(Ognjen Stipetić, Grgur Valentić)

Solution. We will solve the subproblems seperately.

a) In order to ensure that we have discovered the code we need to check all but one of the combinations (as otherwise
all unchecked codes can be the correct combination). Total number of combinations is 106 (as each of the 6 discs
consists of 10 digits). As we are given that 000000 is not the correct combination we require at least 106− 2 moves.
We will now prove that there is a sequence of 106 − 2 moves each checking a different combination. We will prove
this by induction on the number of wheels where the case n = 6 is given in the problem.
Claim: For a lock of n wheels and for any starting combination of the wheels (a1a2 . . . an) there is a sequence of
moves checking all 106 combinations exactly once, for all n ∈ N.
Basis: For n = 1 and for the starting combination (a), we consider the sequence of moves

a→ a+ 1→ a+ 2→ . . .→ 9→ 0→ 1→ . . .→ a− 1
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Assumption: The induction claim is valid for some n ∈ N.
Step: We will prove that the claim holds for n+1 as well. We consider an arbitrary starting state (a1a2 . . . anan+1).
By the induction hypothesis there is a sequence of moves such that starting from this state we can check all the
states showing an+1 on the last disc. Let this sequence of moves end with the combination (b1b2 . . . bnan+1).
Now we make the move (b1b2 . . . bnan+1)→ (b1b2 . . . bnan+1 + 1) (if an+1 is 9, then we turn the disc to show 0).
We continue in the same way applying the induction hypothesis on first n discs and the rotation the n+ 1-st disc.
This way we get the sequence of moves

(a1a2 . . . anan+1)→ (b1b2 . . . bnan+1)→ (b1b2 . . . bnan+1 + 1)

→ (c1c2 . . . cnan+1 + 1)→ (c1c2 . . . cnan+1 + 2)

. . .

→ (j1j2 . . . jnan+1 − 2)→ (j1j2 . . . jnan+1 − 1).

This sequence checks each combination exactly once finishing the induction and proving our claim.
b) As in the a) part, we conclude that we have to check all the combinations apart from 000000, 111111, ..., 999999

and we can be sure as to what is the solution before the move checking the last combination.
We denote the combination as black if the sum of its digits is even and white if that sum is odd. We can notice
that all the combinations 000000, 111111, ..., 999999 are black and by each move we swap the color of the current
combination.
Number of black combinations all of which we need to check at least once is 106

2
− 10 while number of such white

combinations is 106

2
.

As we are checking white combinations every second move, in order to check all 106

2
white combination swe need

at least 2 106

2
− 1 = 106 − 1 moves, thus we need at least 106 − 2 moves to find the correct combination.

An example doing this in 106 − 2 moves has been given in part a).

Problem 4. Let a, b, c be positive real numbers satisfying

a

1 + b+ c
+

b

1 + c+ a
+

c

1 + a+ b
>

ab

1 + a+ b
+

bc

1 + b+ c
+

ca

1 + c+ a
.

Prove

a2 + b2 + c2

ab+ bc+ ca
+ a+ b+ c+ 2 > 2(

√
ab+

√
bc+

√
ca).

(Dimitar Trenevski)

Solution. We start with the given condition:

a

1 + b+ c
+

b

1 + c+ a
+

c

1 + a+ b
>

ab

1 + a+ b
+

bc

1 + b+ c
+

ca

1 + c+ a
⇐⇒

a+ ab+ bc

1 + b+ c
+

b+ bc+ ba

1 + c+ a
+

c+ ca+ cb

1 + a+ b
>

ab+ ac+ bc

1 + a+ b
+

bc+ ab+ bc

1 + b+ c
+

ca+ bc+ ab

1 + c+ a
⇐⇒

a(1 + b+ c)

1 + b+ c
+

b(1 + c+ a)

1 + c+ a
+

c(1 + a+ b)

1 + a+ b
>

ab+ bc+ ca

1 + a+ b
+

ab+ bc+ ca

1 + b+ c
+

ab+ bc+ ca

1 + c+ a
⇐⇒

a+ b+ c > (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
.

Now using Cauchy-Schwarz inequality we get:

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(c(1 + a+ b) + a(1 + b+ c) + b(1 + c+ a)) > (

√
a+
√
b+
√
c)2.

Combining the last two inequalities we get:

(a+ b+ c)(a+ b+ c+ 2(ab+ bc+ ca)) >

> (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(a+ b+ c+ 2(ab+ bc+ ca)) =

= (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(c(1 + a+ b) + a(1 + b+ c) + b(1 + c+ a)) >

> (ab+ bc+ ca)(
√
a+
√
b+
√
c)2,
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which now by some algebraic manipulation gives:

(a+ b+ c)(a+ b+ c+ 2(ab+ bc+ ca)) > (ab+ bc+ ca)(
√
a+
√
b+
√
c)2 ⇐⇒

(a+ b+ c)2 + 2(a+ b+ c)(ab+ bc+ ca) > (ab+ bc+ ca)(a+ b+ c+ 2(
√
ab+

√
bc+

√
ca)) ⇐⇒

(a2 + b2 + c2) + (2(a+ b+ c) + 2)(ab+ bc+ ca) > (ab+ bc+ ca)(a+ b+ c+ 2(
√
ab+

√
bc+

√
ca)) ⇐⇒

a2 + b2 + c2

ab+ bc+ ca
+ a+ b+ c+ 2 > 2(

√
ab+

√
bc+

√
ca),

where the last inequality is exactly the one we wanted to prove.

Time allowed: 240 minutes.

Each problem is worth 10 points.

Calculators are not allowed.
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Problem 1. Find all positive integers a, b, n and prime numbers p that satisfy

a2013 + b2013 = pn.

(Matija Bucić)

First solution. Let’s denote d = D(a, b), x = a
d
, y = b

d
. With this we get

d2013(a2013 + b2013) = pn.

So d must be a power of p, so let d = pk, k ∈ N0. We can divide the equality by p2013k. Now let’s denote m =
n− 2013k,A = x671, B = y671. So we get

A3 +B3 = pm,

and after factorisation
(A+B)(A2 −AB +B2) = pm.

(From the definition, A and B are coprime.)
Let’s observe the case when some factor is 1: A + B = 1 is impossible as both A and B are positive integers. And
A2 −AB +B2 = 1⇔ (A−B)2 +AB = 1⇔ A = B = 1, so we get a solution a = b = 2k, n = 2013k+ 1, p = 2, ∀k ∈ N0.
If both factors are larger than 1 we have

p | A+B

p | A2 −AB +B2 = (A+B)2 − 3AB

=⇒ p | 3AB.

If p | AB, in accordance with p | A+ B we get p | A and p | B, which is in contradiction with A and B being coprime.
So, p | 3 =⇒ p = 3.
Now we are left with 2 cases:

• First case: A2−AB+B2 = 3⇔ (A−B)2+AB = 3 – so the only possible solutions are A = 2, B = 1 i A = 1, B = 2,
but this turns out not to be a solution as 2 = x671 does not have a solution in positive integers.

• Second case: 32 | A2 −AB +B2 – then we have:

3 | A+B =⇒ 32 | (A+B)2

32 | A2 −AB +B2 = (A+B)2 − 3AB

=⇒ 32 | 3AB
=⇒ 3 | AB.

And as we have already commented the case p - AB =⇒ doesn’t have any solutions.

So all the solutions are given by
a = b = 2k, n = 2013k + 1, p = 2, ∀k ∈ N0.
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Second solution. As in the first solution, we take the highest common factor of a and b (which must be of the form
pk). Factorising the given equality we get

(x+ y)(x2012 − x2011y + x2010y2 − · · · − xy2011 + y2012) = pm.

(We’re using the same notation as in the first solution.) Denote the right hand side factor by A. As x and y are natural
numbers, we have x+ y > 1 =⇒ p | x+ y. So p - x and p - y (as x and y are coprime). Now by applying LTE (Lifting
the Exponent Lemma):

νp(x
2013 + y2013) = νp(x+ y) + νp(2013)

Now we know νp(2013) = 0 fo all primes p except 3, 11, 61, and in the remaining cases νp(2013) = 1. Note A = 1 and
(x, y) = (1, 1) and A > 61 for (x, y) 6= (1, 1). This inequality holds because for (x, y) 6= (1, 1) (WLOG x > y), we can
write A as

x2011(x− y) + x2009y2(x− y) + · · ·+ xy2010(x− y) + y2012,

which is greater than 61 in cases x > y and y 6= 1.

• If νp(2013) = 1 =⇒ νp(A) = 1 =⇒ A ∈ {3, 11, 61} which is clearly impossible.

• If νp(2013) = 0 =⇒ νp(A) = 0 =⇒ A = 1 =⇒ (x, y) = (1, 1), so we get a solution

a = b = 2k, n = 2013k + 1, p = 2,∀k ∈ N0.

Problem 2. Let ABC be an acute triangle with orthocenter H. Segments AH and CH intersect segments
BC and AB in points A1 and C1 respectively. The segments BH and A1C1 meet at point D. Let P be the
midpoint of the segment BH. Let D′ be the reflection of the point D in AC. Prove that quadrilateral APCD′

is cyclic.

(Matko Ljulj)

First solution. We shall prove that D is the orthocenter of triangle APC. From that the problem statement follows as

∠AD′C = ∠ADC = 180◦ − ∠DAC − ∠DCA = (90◦ − ∠DAC) + (90◦ − ∠DCA) =

= ∠PCA+ ∠PAC = 180◦ − ∠APC.

We can note that quadrilateral BA1HC1 is cyclic. Lines BA1 and C1H intersect in C, lines BC1 and A1H intersect in
A, lines BH and C1A1 intersect in D, and point P is the circumcenter of BA1HC1. So by the corollary of the Brocard’s
theorem point D is indeed the orthocenter of triangle APC as desired.

Second solution. Denote by B1 the orthogonal projection of B on AC. By cyclic quadrilaterals B1C1PA1 (Euler’s
circle), HA1CB1, AC1A1C and C1HB1A we get the following equations:

∠A1PB1 = ∠DC1B1

∠A1B1P = ∠A1CC1 = ∠A1AC1 = ∠DB1C1.

From these equalities we get that triangles B1PA1 and B1C1D are similar, which implies

|B1D|
|B1A1|

=
|B1C1|
|B1P |

=⇒ |B1A1| · |B1C1| = |B1D| · |B1P |.

Analogously, using cyclic quadrilateral ABA1B1 and C1BCB1 we get the following angle equations:

∠B1AC1 = 180◦ − ∠B1A1B = ∠B1A1C

∠AB1C1 = 180◦ − ∠C1B1C = ∠CBA = 180◦ − ∠A1B1A = ∠A1B1C.

From these equalities we get that triangles B1AC1 and B1AC are similar so

|B1C1|
|B1C|

=
|AB1|
|A1B1|

=⇒ |B1A1| · |B1C1| = |B1A| · |B1C|.

Thus we get |B1D
′| · |B1P | = |B1D| · |B1P | = |B1A1| · |B1C1| = |B1A| · |B1C| so by the reverse of the power of the point

theorem the quadrilateral APCD′ is cyclic as desired.
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Problem 3. Prove that the following inequality holds for all positive real numbers a, b, c, d, e and f :

3

√
abc

a+ b+ d
+ 3

√
def

c+ e+ f
< 3

√
(a+ b+ d)(c+ e+ f).

(Dimitar Trenevski)

Solution. The inequality is equivalent to

3

√
abc

(a+ b+ d)2(c+ e+ f)
+ 3

√
def

(a+ b+ d)(c+ e+ f)2
< 1.

By AM-GM inequality we have

3

√
abc

(a+ b+ d)2(c+ e+ f)
6

1

3

(
a

a+ b+ d
+

b

a+ b+ d
+

c

c+ e+ f

)
,

3

√
def

(a+ b+ d)(c+ e+ f)2
6

1

3

(
d

a+ b+ d
+

e

c+ e+ f
+

f

c+ e+ f

)
.

Adding the inequalities we get

3

√
abc

(a+ b+ d)2(c+ e+ f)
+ 3

√
def

(a+ b+ d)(c+ e+ f)2
6

1

3

(
a+ b+ d

a+ b+ d
+
c+ e+ f

c+ e+ f

)
=

2

3
< 1,

as desired.

Problem 4. Olja writes down n positive integers a1, a2, . . . , an smaller than pn where pn denotes the n-th
prime number. Oleg can choose two (not necessarily different) numbers x and y and replace one of them with
their product xy. If there are two equal numbers Oleg wins. Can Oleg guarantee a win?

(Matko Ljulj)

Solution. For n = 1, Oleg won’t be able to write 2 equal numbers on the board as there will be only one number written
on the board. We shall now consider the case n > 2.
Let’s note that as all the numbers are strictly smaller than pn we have all their prime factors are from the set
{p1, p2, . . . , pn−1}, so there are at most n − 1 of them in total. We will represent each number a1, a2, . . . , an by the
ordered (n − 1)-tuple of non-negative integers in the following way if ai = p

αi,1

1 · pαi,2

2 · . . . · pαi,(n−1)

n−1 , then we assign
vi = (αi,1, αi,2, . . . , αi,(n−1)), for all i ∈ {1, 2, . . . , n}.
Let’s consider the following system of equations:

α1,1x1 + α2,1x2 + · · ·+ αn,1xn = 0

α1,2x1 + α2,2x2 + · · ·+ αn,2xn = 0

· · ·
α1,(n−1)x1 + α2,(n−1)x2 + · · ·+ αn,(n−1)xn = 0

There is a trivial solution x1 = x2 = · · · = xn = 0. But as this system has less equalities than variables we can deduce
that it has infinitely many solutions in the set of rational numbers (as all the coefficients are rational). Let (y1, y2, . . . , yn)
be a not trivial solution (so the solution in which not all of yi equal 0). Then we can rewrite the initial system using
a1, a2, . . . , an:

n∏
i=1

ayii =

n∏
i=1

p
αi,1yi
1 · pαi,2yi

2 · . . . · pαi,(n−1)yi
n−1 =

n−1∏
j=1

p
α1,jy1+α2,jy2+···+αn,jyn
j =

n−1∏
j=1

p0j = 1

=⇒
n∏
i=1

ayii = 1.

Considering the numbers y1, y2, . . . , yn as rational numbers in which the respective nominator and denominator are
coprime, Denote by L the lowest common multiplier of their denominators. Taking the L-th power of the upper equality
we get integer exponents in the upper equation (which don’t have a common factor). Furthermore, WLOG we can
assume that a1, a2, . . . , ak are those elements ai whose exponents are negative and numbers ak+1, ak+2, . . . , ak+l are
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those elements with postivie exponent (for some k, l ∈ N, k+ l 6 n). Then, when we shift all ai-s with negative exponent
to the opposite side of the equation and when those with zero exponent get ruled out we get that the following equality

k∏
i=1

arii =

l∏
i=k+1

arii (1)

holds for some positive integers r1, r2, . . . , rk+l for which D(r1, r2, . . . , rk+l) = 1 and for some numbers a1, a2, . . . , ak+l.
(We can note that there is at least one number ai on both sides of the equality otherwise we have only ones on the
board.)
We shall prove that there is a sequence of transformations by which using this relation we will get two equal numbers
among a1, a2, . . . an.

Lemma 1. Let (a, b) ∈ N2 and (x1, x2) ∈ N2 be such that GCD(x1, x2) = 1. Then there exists a sequence of transfor-
mations which replaces the numbers (a, b) with (a′, b′), where one of these numbers a′, b′ is equal to ax1bx2 .

Proof. We’ll prove this by induction on x1 + x2, for all (a, b) ∈ N2. As the basis consider x1 + x2 = 2 =⇒ x1 = x2 = 1.
The number ab we can get by applying transformation (a, b)→ (a, ab).
Let’s assume that the claim holds for all (x1, x2) such that x1 + x2 < n, and for all (a, b). Let’s take some numbers
(x1, x2) such that x1 +x2 = n and some arbitrary numbers (a, b). If x1 = x2 is satisfied, since x1 and x2 are coprime, we
could conclude that both numbers are equal to 1, but we have already proved this case in basis. Let’s assume x1 6= x2.
WLOG x1 > x2. Then we apply the transformation (a, b)→ (a, ab), and then apply the induction hypothesis on numbers
(a, ab) and (x1 − x2, x2):

(a, b)→ (a, ab)→ (γ, ax1−x2(ab)x2) = (γ, ax1bx2),

where γ is some positive integer, what we wanted to prove.

Lemma 2. Let k ∈ N, (b1, b2, . . . bk) ∈ Nk and (x1, x2, . . . xk) ∈ Nk. Then there exists sequence of transformations which
instead of numbers (b1, b2, . . . bk) writes down numbers (b′1, b

′
2, . . . b

′
k) such that one of those numbers is equal to

(bx11 bx22 · · · b
xk
k )

1
d ,

where d denotes greatest common divisor of numbers x1, x2, . . . xk.

Proof. Intuitively, this lemma is just Lemma 1 repeated (k − 1) times.
We’ll prove this by induction on k, for all b1, b2, . . . bk and x1, x2, . . . xk. In the basis, for k = 1, it holds d = x1, so it we
don’t have to do any transformation to reach desired situation.
Let’s assume that the claim holds for some k ∈ N. Let’s take arbitrary (b1, b2, . . . bk, bk+1) and (x1, x2, . . . xk, xk+1). Then
we apply Lemma 1 on numbers (bk, bk+1) and (x′k, x

′
k+1), where x

′
k = xk

d1
, x′k+1 =

xk+1

d1
, d1 = GCD(xk, xk+1), and then

we apply the induction hypothesis on numbers (b1, b2, . . . b
x′k
k b

x′k+1

k+1 ) and (x1, x2, . . . xk−1, d1):

(b1, b2, . . . bk, bk+1)→ (b1, b2, . . . bk−1, γk, b
x′k
k b

x′k+1

k+1 )→ (γ1, γ2, . . . , γk, (b
x1
1 bx22 · · · b

xk−1

k−1 (b
x′k
k b

x′k+1

k+1 )d1)
1
d2 ),

where γ1, γ2, . . . , γk are some positive integers and d2 = GCD(x1, x2, . . . xk−1, d) = GCD(x1, x2, . . . xk−1, xk, xk+1) = d.
Notice that last number in upper relation is the one we wanted to get.

Lemma 3. Let (a, b) ∈ N2 and (x1, x2) ∈ N2 such that GCD(x1, x2) = 1. Then there exists sequence of transformations
which instead of numbers (a, b) writes down numbers (a′, b′) for which it is satisfied a′/b′ = ax1/bx2 .

Proof. We’ll prove this by induction on x1 + x2, for all (a, b) ∈ N2. In the basis is x1 + x2 = 2 =⇒ x1 = x2 = 1, so we
don’t have to do any transformation to reach desired situation.
Ler’s assume that the claim hold for all (x1, x2) such that x1+x2 < n, and for all (a, b). Let’s take some numbers (x1, x2)
such that x1 + x2 = n and arbitrary numbers (a, b).

• If one of the numbers x1 and x2 is even (WLOG x1 is even): we apply tranformation (a, b)→ (a2, b), and then we
apply induction hypothesis on numbers (a2, b) and (x1

2
, x2).

• Both numbers x1 and x2 are odd, and they are equal: then they are both equal to 1, which we have already solved
in the basis.

• Numbers x1 and x2 are odd and distinct (WLOG x1 > x2): we make following transformations (a, b)→ (a, ab)→
(a2, ab), and then we apply induction hypothesis on numbers (a2, ab) and (x1+x2

2
, x2):

(a, b)→ (a, ab)→ (a2, ab)→ (c · (a2)
x1+x2

2 , c · (ab)x2) = ((ax2c) · ax1 , (ax2c) · bx2),

where c is some positive integer, what we wanted to prove.
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In the equality (1), let d1 = GCD(r1, r2, . . . , rk), d2 = GCD(rk+1, rk+2, . . . , rk+l), zi = ri
d1
, ∀i ∈ {1, 2, . . . , k}, zi = ri

d2
,

∀i ∈ {k+1, k+2, . . . , k+ l}. As well let A be the left hand side of the equality (1), and let B be the right hand side. Let
A′ = A

1
d1 and B′ = B

1
d2 . We want to do such transformations that we get x i y which will have same ratio as A and B.

If we apply Lemma 2 on the numbers (a1, a2, . . . , ak) and (z1, z2, . . . , zk); we get (among other numbers we get) the
number A′. As well applying the same lemma on the numbers (ak+1, ak+2, . . . , ak+l) and (zk+1, zk+2, . . . , zk+l), we will
get the number B′ on the board.
Numbers d1 and d2 are coprime (otherwise there would be some prime p which would divide d1 and d2 which would
imply it divides r1, r2, . . . , rk+l as well which is in contradiction to the assumption they do not have a common factor).
So we can apply Lemma 3 on the numbers (A′, B′) and (d1, d2). Now we get two numbers with the same ratio as A i B.
But as by (1) we have A = B, we get 2 equal numbers on the board.
Thus Oleg can guarantee a win for any n > 1.

Comment: We can get to the relation (1) by concluding that the set {v1, v2, . . . , vn} is linearly dependant subset of
(n− 1)-dimensional space Qn−1.
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Problems and Solutions

Problem 1. In each field of a table there is a real number. We call such n× n table silly if each entry equals
the product of all the number in the neighbouring fields.

a) Find all 2× 2 silly tables.
b) Find all 3× 3 silly tables.

(Two fields of a table are neighbouring if they share a common side.) (Borna Vukorepa)

Solution. We solve the subproblems separately.

a) Denote the numbers in the table as on the picture:

a b

c d

By the problem condition we have the following:

a = bc

b = ad

c = ad

d = bc.

From here we can see a = bc = d and b = ad = c. When we apply this to the upper relations we get a = b2 and
b = a2 and so a = b2 = a4 ⇐⇒ a(a− 1)(a2 + a+ 1) = 0. The real solutions to this problem are a = 0 and a = 1.
Now we can see that all 2× 2 silly tables are those with all element equal and furthermore equal to zero or one.

b) Denote by a, b, c, d the elements in the table which have exactly three neighbours. We denote the remaining elements
in terms of these and get the following table:

ab a ad

b abcd d

bc c cd

Let’s assume that abcd = 0. This implies that the middle element is zero which further implies all its neighbours
are zero and consequently every element in the table is zero. And thus only silly table under in this case is all zeros
table.
Now assume that abcd 6= 0, i.e. none of the table elements is equal to zero. Using the remaining conditions we get:

a = (ab)(abcd)(ad) = a3b2d2c ⇐⇒ a2b2d2c = 1,

Analogously we get a2b2c2d = 1, a2c2d2b = 1 i b2c2d2a = 1 (we are allowed to divide by a, b, c, d as they are all
non-zero). Equating the LHSs of these equations we get a = b = c = d. Inserting this in any of these equations we
get a7 = 1 =⇒ a = 1.
Thus all 3× 3 silly tables are all ones and all zeros tables.

Problem 2. Palindrome is a sequence of digits which doesn’t change if we reverse the order of its digits. Prove
that a sequence (xn)

∞
n=0 defined as

xn = 2013 + 317n

contains infinitely many numbers with their decimal expansions being palindromes.
(Stijn Cambie)
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First solution. We will prove the following lemma providing two proofs:

Lema 1. There is infinitely many numbers divisible with 317 with their decimal expansions consisting only of ones.

Proof. Considering the sequence 1, 11, 111, . . . consisting of infinitely many numbers. This numbers have some residues
modulo 317. By The Pigeonhole Principle there are at least two numbers in this sequence with the same residue modulo
317. Let the smaller of these two have l digits and larger k. Their difference is

111 . . . 1︸ ︷︷ ︸
k times

− 111 . . . 1︸ ︷︷ ︸
l times

= 111 . . . 1︸ ︷︷ ︸
(k−l) times

000 . . . 0︸ ︷︷ ︸
l times

divisible by 317. It will also remain divisible by 317 if we divide it by 10l (as 10 and 317 are coprime). This way we get
a number consisting only of ones divisible by 317. Let’s denote the number of its digits by k. We get infinitely many
such numbers by considering numbers consisting of k, 2k, 3k, . . . ones.

Proof. As 317 is prime, and as it is coprime with 10 by Fermat’s Little Theorem

10316 ≡ 1 (mod 317) =⇒ 317 | 10316m − 1, ∀m ∈ Z,m > 1.

As 9 is coprime with 317 as well, numbers of the form 1
9
(10316m − 1), m ∈ Z,m > 1 have the property we desire.

Continuing with the solution we can note that some integer m is in the sequence (xn)
∞
n=0 if and only if m > 2013 and

m ≡ 2013 ≡ 111 (mod 317). Let (yn)∞n=0 be a sequence of infinitely many positive integers with their decimal expansions
consisting only of ones and each being divisible by 317 (we are using our lemma here). Now numbers

1000yn + 111

are in the sequence (as they have the remainder 111 modulo 317) and their decimal expansions are palindromes. Thus
there is infinitely many members of the sequence (xn)

∞
n=0 whose decimal expansions are palindromes.

Second solution. We will prove the generalised version of the problem for the sequence (xn)
∞
n=0 defined as xn = a+nb,

where a, b are arbitrary positive integers with the property that b is coprime with 10. The problem is a special case of
this for a = 2013 i b = 317.
We define the sequence (yn)

∞
n=0 in the following way: yn = 10nϕ(b). Using The Euler’s Theorem, yn ≡ 1 (mod b).

Considering the number 1 + yn + y2
n + . . . ya−1

n , its decimal expansion is:

1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

. . . 1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

1

where the digit one is repeated a times. It is clear now that the decimal expansion of this number is a palindrome. On
the other hand 1 + yn + y2

n + . . . ya−1
n ≡ 1 + 1 + . . . 1 = a (mod b), so this number is in the sequence (xn)

∞
n=0, for each

number n. Thus we have found infinitely many members of the sequence (xn)
∞
n=0 with their decimal expansions being

palindromes as we wanted.

Problem 3. We call a sequence of n digits one or zero a code. Subsequence of a code is a palindrome if it is
the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in
the code.(Code (1101) contains 10 palindromes, of which 6 are nice.)

a) What is the least number of palindromes in a code?

b) What is the least number of nice palindromes in a code?

(Ognjen Stipetić)

Solution. We will consider the two subproblems separately:

a) Consider any code. Assume there is k digits one and n− k digits zero. We now transform this code into

111 . . . 1︸ ︷︷ ︸
k puta

000 . . . 0︸ ︷︷ ︸
n−k puta

by preserving the order among same digits. Lets note that each palindrome consisting of same digits is in the initial
code if and only if it is in the transformed code. The transformed code doesn’t have a palindrome not consisting
of same digits and thus the transformed code has less or equal palindromes than the initial one.
Thus we conclude that it is enough to consider only the codes starting with k digits one and ending in n− k zeros,
for some k ∈ {0, 1, . . . n}.
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Let us fix a k ∈ {0, 1, . . . n}. The code consisting of k ones and n− k zeros has 2k − 1 + 2n−k − 1 = 2k + 2n−k − 2
palindromes. We now seek k which minimizes this expression.
If n is even (n = 2m), by the AM-GM inequality 2k + 2n−k > 2 ·

√
2k+n−k = 2m + 2m =⇒ the least possible

number of palindromes in the code with 2m digits is 2m + 2m − 2 = 2m+1 − 2, and this number is clearly attained
for the code with m digits one and ending in m digits zero.
If n is odd (n = 2m+ 1) we have the following inequality for each k ∈ {0, 1, . . .m− 1}:

2k + 2n−k > 2k+1 + 2n−k−1 (⇐⇒ 2n−k−1 > 2k)

From this we also get 2k + 2n−k−1 < 2k−1 + 2n−k+1 for all k ∈ {m+ 1,m+ 2, . . . 2m+ 1}. So:

20 + 2n > 21 + 2n−1 > . . . > 2m + 2m+1 = 2m+1 + 2m < 2m+2 + 2m−1 < . . . < 2n + 20

Now it is clear that the least number of palindromes in the code with 2m + 1 digits is 2m + 2m+1 − 2 and this
number is attained by the code of m digits one and m+ 1 digits zero.

b) For n = 1 we clearly see that the answer is 1. From now on we assume n > 2.
As well for simplicity of the write-up we will not consider the one-digit palindromes as nice as we know that each
code of n digits consists of n one-digit palindromes, each of which is nice. So we will find the smallest possible
number of multi-digit nice palindromes and we will add n to this number to get the desired solution.
As a last remark: in this part of the solution for brevity we will denote as palindromes only those that are nice by
the definitions in the problem statement.
Code consisting of n digits 1 contains one n-digit palindrome, two (n − 1)-digit palindromes, ..., n − 2 three digit
palindromes and n − 1 two digit palindromes. After summing up we get that this code has n(n−1)

2
palindromes.

Analogously the code consisting of n digits 0 contains the same number of palindromes.
We now consider the code which contains at least one digit one and at least one digit zero. Then each digit 1 except
the rightmost one is the start of at least one palindrome (the sequence of digits starting with it and ending in the
first digit one to the right of it is of the form 100 . . . 01 and is thus a palindrome). Analogously we conclude that
each digit 0 apart from the rightmost one is a start of at least one palindrome. As we have at least one digit 1 and
one digit 0 we conclude that each code consists of at least n − 2 palindromes (where we have deducted 2 for the
rightmost digit 1 and 0).
By induction on n we will show that for each n ∈ N, n > 2 we can find a code with exactly n − 2 palindromes.
We can note that for n = 2, 3, 4 this is possible as the examples are (10), (101), (1101). Now let’s assume that the
induction claim holds for some n ∈ N, n > 4, and let (x1 . . . xn) be a code with exactly n− 2 palindromes.
That code is certainly not (011 . . . 1) or (100 . . . 0) (similarly as in the case with all digits equal we conclude that
these codes have (n−1)(n−2)

2
> n− 2 palindromes).

We now that each of the digits one/zero apart from the rightmost ones is the start of at least one palindrome.
In order for total number of palindromes to be n − 2 all such digits are starts of exactly one palindrome. As
(x1 . . . xn) 6= (011 . . . 1) and (x1 . . . xn) 6= (100 . . . 0), digit x1 is not the rightmost digit one/zero =⇒ x1 is the
start of exactly one palindrome.
We now show that we can choose a digit x0 such that (x0x1x2 . . . xn) contains exactly n− 1 palindromes. As there
are n − 2 palindromes (x1x2 . . . xn) we need to show that we can choose x0 such that x0 is a start of exactly one
palindrome in (x0x1 . . . xn). We know that x0 is a start of at least one palindrome so we actually only have to show
it is a start of at most one palindromes.
Let’s consider to which palindromes can x0 be a start:

• (x0x1) is a palindrome⇐⇒ x0 = x1

• (x0x1x2) is a palindrome⇐⇒ x0 = x2

• (x0x1x2 . . . xkxk+1) is a palindrome, for some k ∈ {2, 3, 4, . . . , n−1} ⇐⇒ x0 = xk+1 and (x1x2 . . . xk) is a palindrome

As there is exactly one palindrome for which x1 is the start we conclude there is at most one palindrome such that
x0 is its start and it has the form as in the third case above. Thus there are at most three palindromes to which
x0 can be the first digit as we have two options for the choice of x0 ∈ {0, 1}. Thus, by The Pigeonhole Principle
we can choose a digit such that x0 is a start of at most one palindrome, as desired.
Now using this and the remarks given before we have shown that the smallest possible number of nice palindromes
with n digits is 1 (for n = 1) and 2n− 2 (for n > 2).

Problem 4. Given a triangle ABC let D,E, F be orthogonal projections from A,B,C to the opposite sides
respectively. Let X,Y, Z denote midpoints of AD,BE,CF respectively. Prove that perpendiculars from D to
Y Z, from E to XZ and from F to XY are concurrent.

(Matija Bucić)
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First solution. Let H be the orthocenter of the triangle ABC. We denote the midpoint of EF as P . As PZ is a midline
of the triangle CEF we have PZ||AC, and as Y H is perpendicular to AC, we get that Y H is perpendicular to PZ.
Analogously we conclude that the line ZH is perpendicular to PY , so H has to be the orthocenter of the triangle PY Z.
From this we can deduce that the line PH is perpendicular to Y Z, and thus PH is parallel to the line perpendicular to
Y Z which passes through D.
Now denote as N the tangency point of the incircle of the triangle DEF with its side EF . Let N ′ be the point symmetric
to N with respect to H and let M be the tangency point of the D-excircle of the triangle DEF with the side EF . As
P is the midpoint of NM and as is H the midpoint of NN ′, we have that PH is parallel to N ′M . As we know that M
is the map of the point N ′ under the homothety with centre D which maps the incircle to excircle of the triangle DEF ,
we can conclude that D, N ′ and M are collinear.
We can now conclude that the line perpendicular to Y Z passing through D is parallel to PH while this line is parallel
to N ′M . As D lies on N ′M we conclude that DM is the line through D perpendicular to Y Z.
Analogously we can conclude that perpendiculars from E to XZ and from F to XY are lines joining vertices with the
corresponding excircle tangency point of the triangle DEF . Using the Ceva’s Theorem gives us the result.

Remark: The intersection of the lines connecting the vertices of the triangle respective tangency points intersect in the
point which is called Nagel’s point of the triangle (so we have proved that the three lines in the problem intersect in the
Nagel’s point of the triangle DEF ).

Second solution. By applying The Carnot’s Theorem to the triangle XY Z and points D,E, F , three lines in the
problem are concurrent if and only if:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 = 0 (1)

In the triangle AFD and EFB lines FX and FY are medians, so

FX2 =
1

4
(2AF 2 + 2FD2 −AD2)

FY 2 =
1

4
(2FB2 + FE2 − EB2).
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Noting that the other sides on the LHS of (1) are medians in the respective triangles we deduce:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 =

1

4
[(2AF 2 +���2FD2 −HHHAD2)− (2FB2 +���2FE2 −HHHEB2)+

+(2DB2 +���2DE2 −HHHEB2)− (2DC2 +���2DF 2 −HHHCF 2)+

+(2EC2 +���2EF 2 −HHHCF 2)− (2EA2 +���2ED2 −HHHAD2)] =

1

2
(AF 2 − FB2 +DB2 −DC2 + EC2 − EA2).

From right-angled triangles AFC and FBC we get:

AF 2 − FB2 = (AC2 − FC2)− (BC2 − FC2) = AC2 −BC2.

Applying this analogously to triangles AEB,EBC,ADC,ADB we get:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 =

1

2
(AF 2 − FB2 +DB2 −DC2 + EC2 − EA2) =

1

2
(AC2 −BC2 +AB2 −AC2 +BC2 −AB2) = 0,

Q.E.D.
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