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ABOUT THE TYPES OF HOMOGENOUS LINEAR 

DIFFERENTIAL EQUATIONS OF SECOND ORDER AND 

THEIR SOLUTIONS 
 

Lazo Dimov   
 

 

Abstract In the paper, types of linear differential equations of second order are 

defined in the sense of the known classification of the types of linear partial 

differential equations of second order. Then the shapes of their solutions are 

examined and some classes differential equations are solved.   

 

 

1. PART 1 

 

For the linear partial differential equations of second order 
2 2 2

2 2
2 0z z z z z

x y x yx y
A B C D E Fz G    

    
       , 

where , , , , ,A B C D E F and G  are real functions from the two variables x  and 

y , depending on the value of the determinant 

A B

B C
  , 

we have the following classification: 

 1. If 0  , it is a PDE of hyperbolic type. 

 2. If 0  , it is a PDE of parabolic type. 

 3. If 0  , it is a PDE of elliptic type. 

 

 Here, we will make a similar classification for the homogenous linear 

differential equations of second order. It is well known that the equation 

0y Ay             (1) 

______________________________________________ 

2010 Mathematics Subject Classification. 34A05, 34A30. 

Key words and phrases. classification, elliptic type, parabolic type, hyperbolic type, differential 

equation with constant coefficients. 
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where A const  (equation 2.9 on page 365 in [2]), has a solution which can be 

written with the formula 

1 2( ) sin cos , for 0y x c Ax c Ax A    

     1 2( ) , for 0y x c x c A             (2) 

1 2( ) sh ch , for 0y x c Ax c Ax A     . 

 By analogy with the classification of the linear PDE of second order that we 

made, we can make the following classification for the equation (1) and its 

solution (2): 

 1. If 0A , it is an equation of hyperbolic type. 

 2. If 0A , it is an equation of parabolic type. 

 3. If 0A , it is an equation of elliptic type. 

 If ( )A a x  is a given function, then we can make the following 

classification of the equation (1), which now has the form 

 ( ) 0y a x y             (3) 

and its solution as well, i.e.: 

 1. An equation of hyperbolic type, if ( ) 0a x  . 

 2. An equation of parabolic type, if ( ) 0a x  . 

 3. An equation of elliptic type, if ( ) 0a x  . 

 For the solution of the equation (3) for every type, we examine the following 

formulas: 

1 ( ) 2 ( )( ) sin cos , for ( ) 0a x a xy x c x c x a x    

     1 2( ) , for ( ) 0y x c x c a x             (4) 

1 ( ) 2 ( )( ) sh ch , for ( ) 0a x a xy x c x c x a x   . 

Here, the functions ( ) ( ) ( ) ( )sin , cos , sh , cha x a x a x a xx x x x  are defined and 

determined in [3]. 

 It is well known that if in the differential equation 

( ) ( ) 0y f x y g x y              (5) 

we introduce a new function given with  

   
1
2

( )
( ) ( )

f x dx
y x e z x

            (6) 

it will transform in the differential equation  

( ) 0z a x z              (7) 

known as canonical equation, where 

 21 1
2 4

( ) ( ) ( ) ( )a x g x f x f x   .         (8) 
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Now, according to the previous classification we made, we get the following 

classification for the equation (5): 

 1. The equation (5) is of hyperbolic type, if ( ) 0a x  . 

 2. The equation (5) is of parabolic type, if ( ) 0a x  . 

 3. The equation (5) is of elliptic type, if ( ) 0a x  . 

Here, the solution of the equation (5), we get with the formulas: 

 
1
2

( )
1 ( ) 2 ( )( ) [ sin cos ], for ( ) 0

f x dx
a x a xy x e c x c x a x

     

 
1
2

( )
1 2( ) [ ], for ( ) 0

f x dx
y x e c x c a x

              (9) 

 
1
2

( )
1 ( ) 2 ( )( ) [ sh ch ], for ( ) 0

f x dx
a x a xy x e c x c x a x

    . 

 

Example. The differential equation 

2 22( ) ( 2 2 1) 0y x k y x kx k k y          

where 

2 2( ) 2( ), ( ) 2 2 1,f x x k g x x kx k k        

and k const  has a canonical equation 

2( ) 0,z k k z     

so, according to the formulas (2) has a solution 

      2 2
1 2( ) sin cos , if ,0 1,z x c k kx c k kx k         

   1 2( ) , if 0 and 1z x c x c k k               

    
2 2

1 2( ) , if 0,1 .k k x k k xz x c e c e k      

Now, the given equation according to the formulas (9) has a solution: 

    
2

2 2 2
1 2( ) [ sin cos ], if ,0 1,

x kx
y x e c k kx c k kx k

 
         

 

2

2
1 2( ) [ ], if 0

x

y x e c x c k


     

 

2

2
1 2( ) [ ], if 1

x x
y x e c x c k

 
              

  
2

2 2
2

1 2( ) [ ], if 0,1 .
x kx k k x k k xy x e c e c e k
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2. PART 2 

 

 If we introduce a new independent variable in the equation (5) with the 

relation ( )x x t , in order to get the equation (5) shaped as (1), we get that the 

functions that appear in the equation, satisfy the condition 

( ) 2 ( ) ( ) 0g x f x g x           (10) 

and we get the new variable from the relation 

2
( )

( ) .A
g x

x t            (11) 

 From (11) we have the following: 

 1. for ( ) 0g x   we have 0A , so the equation becomes an equation from 

elliptic type, where the connection between the new and the old variable is 

( ) .At g x dx    

 2. for   0g x   we have 0A , so the equation becomes an equation from 

hyperbolic type, where the connection between the new and the old variable is 

( ) .At g x dx        

 3. if ( ) 0g x  , we can say that the equation is from parabolic type. Actually, 

the equation is 

( ) 0y f x y    

and its solution is given with the formula 

( )
1 2( ) .

f x dx
y x c e dx c

   

Now, for the general solution of this kind of equation according to the formula 

(2), we get the following formula: 

  
( ) ( )

1 2( ) , for ( ) 0
g x dx g x dx

y x c e c e g x
       

  
( )

1 2( ) , for ( ) 0
f x dx

y x c e dx c g x
           (12) 

     1 2( ) sin ( ) cos ( ) , for ( ) 0.y x c g x dx c g x dx g x     

 

Example. In the differential equation 

1
2

0,k
x x

y y y     

where the functions 1
2

( )
x

f x   and ( ) k
x

g x   satisfy the condition (10). So, 

according to the formulas (12), its solution is   
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2 2
1 2( ) , for 0kx kxy x c e c e kx      

  1 2( ) , for 0y x c x c k               (12’) 

  1 2( ) sin(2 ) cos(2 ), for 0.y x c kx c kx kx    

  

3. PART 3  

 

 Here we will explore the differential equation of second order with positive 

constant coefficients 

2( ) 2 ( ) ( ) 0,y t ay t b y t            (13) 

(in [5] it is explored with dimensional constants). The characteristic equation of 

the equation (13) is 

2 22 0.r ar b    

Its solutions are     2 2
1 2 .r a a b     

It is useful to write them in the following shape 

2 2
1 2 ( ( ) 1) ( ) , , 1.a a a

b b b
r b k l b k l k           

 Now, depending on the value of l , we make the following classification of 

the equation (13): 

 1. for 0l   i.e. 1k  , the equation is an equation from elliptic type,  

 2. for 0l   i.e. 1k  , the equation is an equation from parabolic type, 

 3. for 0l   i.e. 1k  , the equation is an equation from hyperbolic type. 

Its solution is given with the formulas: 

1 2( ) ( cos sin ), for 0, i.e. 1btky x e c lbt c lbt l k       

1 2( ) ( ), for 0, i.e. 1bty x e c c t l k              (14) 

1 2( ) , for 0, i.e. 1, where , .btm btny x c e c e l k m k l n k l           

 Now, if in the differential equation (5) we introduce new independent 

variable with the relation ( )x x t , in order to get the equation (5) shaped as the 

differential equation (13), we get that the following conditions have to be 

satisfied 

( )

( )
( ) ( ) 2

x t

x t
f x x t a




             (15) 

2 2( ) ( ) .g x x t b            (16) 

Eliminating t  from (15) and (16) we get 
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2 ( ) ( ) ( )

4 ( ) ( )
.

g x f x g x a
bg x g x

k


            (17) 

Now, if we find the derivative of (17) we get the functional connection: 

2 22 ( ) ( ) ( ) 4 ( ) ( ) 2 ( ) ( ) 3 ( ) 0f x g x g x g x f x g x g x g x          (18) 

which in fact is the condition that has to satisfy the functions ( )f x  and ( )g x  in 

order the equation (5) to be able to transform into (13). 

 From (16) we come to the connection between the old and the new 

independent variable: 

 ( ) .bt g x dx            (19) 

So, we have proven the following theorem: 

 

Theorem. The differential equation (5) can be transformed into a differential 

equation of type (13) if the functions ( )f x  and ( )g x  satisfy the condition (18) 

and the new independent variable is given with the relation (19). Here, we get 

the general solution according to the formulas (14) in which we substitute 

bt with (19) and the ratio a
b

k  is given with the formula (17). 

 For the general solution we have the formulas:    

 ( ) 2
1 2cos ( ) sin ( ) , for 0 1, 1 .

k g x dx
y e c l g x dx c l g x dx k l k

       

( )
1 2( ( ) ), for 1,

g x dx
y e c c g x dx k

              

( ) ( )
1 2 , for 1, where , .

m g x dx n g x dx
y c e c e k m k l n k l             

 

Example 1. In the differential equation 

1
2

( ) 0,
x

y c x y xy      

the functions 1
2

( )
x

f x c x   and ( )g x x  satisfy the condition (18), for k  

from (17) we get 
2
ck  . So, according to the formula for the substitute, we have 

3
22

3
( ) .g x dx xdx x    

 Depending on the value of c  we have the following forms for the solution of 

the differential equation  

  

3
3 32

3 2 22 21 1
1 23 3

( cos 4 sin 4 ), for 0 2.
c x

y e c c x c c x c
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3
3 2 2

32
1 2( ) , for 2,

x
y c c x e c


               

 

3 32 24 42 2
3 3

1 2 , for 2.
c c c cx x

y c e c e c
   

    

 

Example 2. The Euler differential equation 

2 0,x y cxy y     

written in shape (5) is  

2
1 0c

x x
y y y    . 

The functions ( ) c
x

f x   and 
2

1( )
x

g x   satisfy the condition (18) and for k  

from (17) we get 1
2

ck  . So, according to the formula for the substitute, we 

have 

1( ) ln .
x

g x dx dx x    

 Depending on the value of c  we have the following forms for the solution of 

the differential equation  

1
3 2 21 1

1 22 2
( cos 3 2 ln sin 3 2 ln ), for 1 3,

c

y e c c c x c c c x c


         

1
1 2( ln ) , for 3,

x
y c c x c    

2 21 2 3 1 2 3
2 2

1 2 , for 3.
c c c c c c

y c e c e c
       

    

 

Note. In [2] on page 383, ex. 2.75 is proven that the differential equation (5) 

with similar substitution can be transformed into the differential equation with 

constant coefficients 

0,y ay y     

which is a special case of the equation (13). 
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SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON FIXED 

POINTS OF MAPPINGS IN 2-BANACH SPACES  

 

Martin Lukarevski
1
, Samoil Malčeski

2
 

 

 

Abstract. In the past few years, the classical results about the theory of 

fixed point are transmitted in 2-Banach spaces, defined by A. White 

(see [3] and [8]). Several generalizations of Kannan, Chatterjea and 

Koparde-Waghmode theorems are given in [1], [4], [5] and [7]. In this 

paper, several generalizations of already known theorems about 

common fixed points of mappings in 2-Banach spaces, are proven, by 

using the sequentially convergent mappings.  

 

 

1. INTRODUCTION 

 

In 1968 White ([3]) introduces 2-Banach spaces. 2-Banach spaces are being 

studied by several authors, and certain results can be seen in [8]. Further, 

analogously as in normed space P. K. Hatikrishnan and K. T. Ravindran in [6] 

are introducing the term contraction mapping to 2-normed space as follows.  

 

Definition 1 ([6]). Let ( ,|| , ||)L    be a real vector 2-normed space. The mapping 

:S L L  is contraction if there is [0,1)  such that  

|| , || || , ||Sx Sy z x y z   , for all , ,x y z L . 

 

Regarding contraction mapping Hatikrishnan and Ravindran in [6] proved 

that contraction mapping has a unique fixed point in closed and restricted subset 

of 2-Banach space. Further, in [1], [4], [5] and [7] are proven more results 

related to fixed points of contraction mapping of 2-Banach spaces, and in [7] are 

proven several results for common fixed points of contraction mapping defined 

on the same 2-Banach space. 
______________________________________________________ 

2010 Mathematics Subject Classification. 46J10, 46J15, 47H10 

Key words and phrases. 2-normed spaces, 2-Banach spaces, fixed point, contraction 

mappings  
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In our further considerations, we will give some generalizations of the above 

results for common fixed points of mapping defined on the same 2-Banach 

space. Thus, the mentioned generalizations we will do with the help of so-called 

sequentially convergent mappings which are defined as follows.  

 

Definition 2. Let ( ,|| , ||)L    be a 2-normed space. A mapping :T L L  is said 

to be sequentially convergent if, for every sequence { }ny , if { }nTy  is 

convergent then { }ny  also is convergent.  

 

2. COMMON FIXED POINTS OF MAPPING OF 

 THE KANNAN TYPE 

 

Theorem 1. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0   

are such that 2 1    and  

1 2 1 2|| , || (|| , || || , ||) || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        ,  (1) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  

Proof. Let 0x  be an arbitrary point of L  and let the sequence { }nx  be defined 

with 2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is 0n   such 

that 1 2n n nx x x   , then it is easy to prove that nu x  is a common fixed 

point for 1S  and 2S . Therefore, let's assume that there do not exist three 

different consecutive equal members of the sequence{ }nx . So, using 

inequalities (1), it is easy to prove that for each 1n   and for each z L  the 

following holds true  

2 1 2 2 1 2 2 2 1 2 2 1|| , || (|| , || || , ||) || , ||n n n n n n n nTx Tx z Tx Tx z Tx Tx z Tx Tx z            

and 

2 1 2 2 2 2 1 2 1 2

2 2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





   

 

    

 
 

from which it follows that 

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    ,         (2) 

for each 0,1,2,...n  , where 
1

1
 







  . Now from inequality (2) it follows 

that  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    ,         (3) 
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for each z L  and for each 0,1,2,...n  . But, then from inequality (3) follows 

that for each , ,m n n m N  and for each z L  the following holds true  

1 01
|| , || || , ||

m

n mTx Tx z Tx Tx z


   , 

which means that the sequence { }nTx  is Cauchy and because space L  is 2- 

Banach we get that the sequence { }nTx  is convergent. Further, the mapping 

:T L L  is sequentially convergent and because the sequence { }nTx  is 

convergent, from definition 2 follows that the sequence { }nx  is convergent, i.e. 

exists u L  such that lim n
n

x u


 . Now from the continuity of T  follows that 

lim n
n

Tx Tu


 . Then, for each z L  the following holds true  

1 2 2 2 2 1

2 2 2 2 1 1

|| , || || , || || , ||

|| , || || , ||

n n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS x TS u z

 

 

    

   
 

2 2 1 2 1 2 2 1

2 1

2 2 1 2 1 2 2

2 1

|| , || (|| , || || , ||)

|| , ||

|| , || (|| , || || , ||)

|| , || .

n n n

n

n n n

n

Tu Tx z Tu TS u z Tx TS x z

Tu Tx z

Tu Tx z Tu TS u z Tx Tx z

Tu Tx z









  



  



     

 

     

 

 

If in the last inequality we take that n , for each z L  the following holds 

true  

1 1|| , || || , ||Tu TS u z Tu TS u z   , 

and since 1  , we conclude that 1|| , || 0TS u Tu z  , for each z L , i.e. 

1TS u Tu . But, T  is injection, so 1S u u , i.e. u  is fixed point on 1S . 

Analogously can be proved that u  is fixed point of 2S . Let v L  is another 

fixed point of 2S , i.e. 2S v v . Then, for each z L  the following holds true  

1 2

2 1

|| , || || , ||

(|| , || || , ||) || , ||

(2 ) || , ||,

Tu Tv z TS u TS v z

Tu TS v z Tv TS u z Tu Tv z

Tu Tv z

 

 

  

     

  

 

and as 2 1    we get that for each z L  the following holds true

|| , || 0Tu Tv z  , from which follows Tu Tv . But, T  is injection, sou v . ■  

 

Corollary 1. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0   

are such that 2 1    and  
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2 2
1 2

1 2

|| , || || , ||
1 2 || , || || , ||

|| , || || , ||
Tx TS x z Ty TS y z

Tx TS x z Ty TS y z
TS x TS y z Tx Ty z 

  

  
    , 

for each , ,x y z L , 0z  , then 1S  and 2S  have a unique common fixed point 

z L .  

Proof. From inequality of condition follows inequality (1). Now the assertion 

follows from Theorem 1. ■ 

 

Corollary 2. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0 1   and  

3
1 2 1 2|| , || || , || || , || || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  

Proof. From the inequality between the arithmetic and geometric mean follows 

that  

1 2 1 23
( , ) ( ( , ) ( , ) ( , ))d TS x TS y d Tx TS x d Ty TS y d Tx Ty    . 

Now the assertion follows from Theorem 1 for 
3
   . ■  

 

Corollary 3. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and  

1 2 1 2|| , || (|| , || || , ||) || , ||
p q p q

TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. From Theorem 1 follows that mappings 1
p

S  and 2
q

S  have a unique 

common fixed point u L . That means 1
p

S u u , so 1 1 11 1( ) ( )
p p

S u S S u S S u  , 

and 1S u  is fixed point of 1
p

S . Analogously, we can prove that 2S u  is fixed 

point of 2
q

S . But, from the proof of Theorem 1 follows that mappings 2
q

S  and 

1
p

S  have unique fixed point, so 2u S u  and 1u S u . According to that, u L  

is a unique common fixed point of 1S  and 2S . Clearly, if v L  is another 

unique common fixed point of 1S  and 2S , then it is a common fixed point of 1
p

S  

and 2
q

S . But, 1
p

S  and 2
q

S  have a unique common fixed point, so v u . ■  
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Remark 1. Mapping :T L L  defined by ,Tx x x L   is sequentially 

convergent. Therefore, if in theorem 1 and the corollaries 1, 2 and 3 we take that 

Tx x  follows Theorem 4 and corollaries 6, 7 and 8, [7]. 

 

3. COMMON FIXED POINTS OF MAPPINGS OF CHATTERJEA TYPE  

 

Theorem 2. Let ( ,|| , ||)L    be a 2- Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0,   

are such that 2 1    and  

1 2 2 1|| , || (|| , || || , ||) || , ||TS x TS y z Tx TS y z Ty TS x z Tx Ty z        ,  (4) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point u L .  

Proof. Let 0x  is arbitrary point from L  and the sequence { }nx  is defined with 

2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is 0n   such that

1 2n n nx x x   , then nu x  is common fixed point of 1S  and 2S . Therefore, 

let's assume that there are three different consecutive equal members of the 

sequence{ }nx . Then, from nequality (4) follows that for every z L  and for 

every 1n   the following holds true  

2 1 2 2 1 2 2 2 1

2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





  



    

 
 

and 

2 1 2 2 2 2 1 2 1 2

2 2 2 1

|| , || (|| , || || , ||)

|| , ||,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





   

 

    

 
 

so for each z L  and for each 0,1,2,...n   the following holds true 

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    , 

where 
1

1
 







  . Then, for each z L  and for each 0,1,2,...n   the 

following holds true  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    .       (5) 

Furthermore, using the inequality (5), in the same way as in the proof of 

Theorem 1 can be proved that the sequence { }nTx is convergent, from where it 

follows that the sequence { }nx  is convergent, i.e. there is u L  such that 

lim n
n

x u


  and lim n
n

Tx Tu


 . We will prove that u  is a fixed point of 1S . 

For each z L  we have  
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1 2 2 2 2 1

2 2 2 2 1 1

2 2 2 1 1 2 2 1

2 1

2 2 2 1 1 2

|| , || || , || || , ||

|| , || || , ||

|| , || (|| , || || , ||)

|| , ||

|| , || (|| , || ||

n n

n n

n n n

n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS x TS u z

Tu Tx z Tx TS u z Tu TS x z

Tu Tx z

Tu Tx z Tx TS u z Tu Tx







 

 

  



 

    

   

     

 

      2

2 1

, ||)

|| , ||,

n

n

z

Tu Tx z



 

 

and if in the last inequality we take n  we get that for each z L  the 

following holds true 1 1|| , || || , ||Tu TS u z Tu TS u z   , and how 1  , from the 

last inequality follows 1|| , || 0TS u Tu z  , for each z L . Now, as in the proof 

of Theorem 1 we can conclude that u  is fixed point of 1S . Analogously can be 

proved that u  is fixed point of 2S . Let v L  is another fixed point of 2S , i.e. 

2S v v . For each z L  the following holds true  

1 2

2 1

|| , || || , ||

(|| , || || , ||) || , ||

(2 ) || , || .

Tu Tv z TS u TS v z

Tu TS v z Tv TS u z Tu Tv z

Tu Tv z

 

 

  

     

  

 

Since 2 1    from the last inequality it follows that for every z L  the 

following holds true || , || 0Tu Tv z  , from which follows that Tu Tv . But, T  

is injection, so u v . ■  

 

Corollary 4. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and the 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0  , 0   are such that 2 1    and 

2 2
2 1

2 1

|| , || || , ||
1 2 || , || || , ||

|| , || || , ||
Tx TS y z Ty TS x z

Tx TS y z Ty TS x z
TS x TS y z Tx Ty z 

  

  
    , 

for each , ,x y z L , 0z  , then 1S  and 2S  have a unique common fixed point 

u L .  

Proof. From inequality of condition follows inequality (4). Now the assertion 

follows from Theorem 2.■ 

 

Corollary 5. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0 1   and  

3
1 2 2 1|| , || || , || || , || || , ||TS x TS y z Tx TS y z Ty TS x z Tx Ty z        , 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point z L .  
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Proof. From the inequality between the arithmetic and geometric mean follows 

that 

1 2 2 13
( , ) ( ( , ) ( , ) ( , ))d TS x TS y d Tx TS y d Ty TS x d Tx Ty   . 

Now the assertion follows from Theorem 2 for 
3
   . ■  

 

Corollary 6. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and  

1 2 2 1|| , || (|| , || || , ||) || , ||
p q q p

TS x TS y z Tx TS y z Ty TS x z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. The proof is identical to the proof of the corollary 5. ■ 

 

Remark 2. The mapping :T L L  determined by ,Tx x x L   is sequentially 

convergent. Therefore, if in Theorem 2 and corollaries 4, 5 and 6 we take 

Tx x , follows the correctness of Theorem 5 and corollaries 9, 10 и 11, [7].  

 

4. COMMON FIXED POINTS OF MAPPINGS OF KOPARDE-WAGHMODE TYPE  

 

Theorem 3. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :S S L L  and mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0,   

2 1    and  

2 2 2 2
1 2 1 2|| , || (|| , || || , || ) || , ||TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , (6) 

for each , ,x y z L , then 1S  and 2S  have a unique common fixed point u L .  

Proof. Let 0x  be an arbitrary point of L  and let the sequence { }nx  is defined 

with 2 1 1 2 2 2 2 2 1, ,n n n nx S x x S x     for 0,1,2,...n  . If there is an 0n   such 

that 1 2n n nx x x   , then nu x  is a common fixed point for 1S  and 2S . 

Therefore, let's assume that there do not exist three consecutive equal members 

of the sequence { }nx . Then, from inequality (6) follows that for each 1n   and 

for each z L  the following holds true  

2 2 2
2 1 2 2 2 1 2 1 2

2
2 2 1

|| , || (|| , || || , || )

|| , || ,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx z

Tx Tx z





  



    

 
 

and 
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2 2 2
2 1 2 2 2 2 1 2 1 2

2
2 2 2 1

|| , || (|| , || || || )

|| , || ,

n n n n n n

n n

Tx Tx z Tx Tx z Tx Tx

Tx Tx z





   

 

    

 
 

from which it follows that for each 0,1,2,...n   and for each z L  the 

following holds true  

1 1|| , || || , ||n n n nTx Tx z Tx Tx z    ,        (7) 

where 
1

1
 







  . Now from inequality (7) follows  

1 1 0|| , || || , ||n
n nTx Tx z Tx Tx z    ,         (8) 

for each 0,1,2,...n   and for each z L . Furthermore, from inequality (8), in 

the same way as in the proof of Theorem 1 it follows that the sequence { }nTx  is 

convergent, and therefore the sequence { }nx  is convergent also, i.e. exists 

u X  such that lim n
n

x u


  and lim n
n

Tx Tu


 . We will prove that u  is fixed 

point of 1S . We have  

1 2 2 2 2 1

2 2 1 2 2 1

2 2 2
2 2 1 2 1 2 2 1 2 1

2
2 2 1 2 1

|| , || || , || || , ||

|| , || || , ||

|| , || (|| , || || , || ) || , ||

|| , || (|| , || ||

n n

n n

n n n n

n n

Tu TS u z Tu Tx z Tx TS u z

Tu Tx z TS u TS x z

Tu Tx z Tu TS u z Tx TS x z Tu Tx z

Tu Tx z Tu TS u z Tx

 



 

 

   

 

    

   

       

     2 2
2 2 2 1, || || , ||n nTx z Tu Tx z   

 

for each nN  and for each z L . If in the last inequality we take n  we 

get that  

1 1|| , || || , ||Tu TS u z d Tu TS u z   ,  

for each z L  and how 1  , it follows that 1|| , || 0Tu TS u z  . Now, again 

as in the proof of Theorem 1 we conclude that u  is fixed point of 1S . 

Analogously it can be proved that u  is fixed point of 2S . Let v L  be another 

fixed point of 2S , i.e. 2S v v . Then, for each z L  the following holds true 

2 2
1 2

2 2 2
1 2

2

|| , || || , ||

(|| , || || , || ) || , ||

|| , || ,

Tu Tv z TS u TS v z

Tu TS u z Tv TS v z Tu Tv z

Tu Tv z

 



  

     

 

 

and how 0 1   we get that || , || 0Tu Tv z  , from where it follows that 

Tu Tv . But, T  is injection, so u v . ■  

 



SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON …21 

 

   

Corollary 7. Let ( ,|| , ||)L    be a 2-Banach space, 1 2, :
p q

S S L L , ,p qN  and 

mapping :T L L  is continuous, injection and sequentially convergent. If 

0, 0    are such that 2 1    and 

2 2 2 2
1 2 1 2|| , || (|| , || || , || ) || , ||
p q p q

TS x TS y z Tx TS x z Ty TS y z Tx Ty z        , 

for each , ,x y z L . Then 1S  and 2S  have a unique common fixed point u L .  

Proof. The proof is identical to the proof of the corollary 6. ■ 

 

Remark 3. The mapping :T L L  determined by ,Tx x x L   is sequentially 

convergent. Therefore, if in Theorem 3 and corollary 7 we take Tx x , it 

follows the correctness of Theorem 6 and corollary 12, [7].  
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ABOUT A TWIN SOLUTION OF THE VEKUA EQUATION  

 

Slagjana Brsakoska   

 

 

Abstract. In the paper main object of research is the Vekua equation. 

Тwo types of functions are found that are strongly connected to each 

other because it will be proven that if one of them is a solution of the 

Vekua equation, so will be the other one with a corresponding 

condition. Three different cases are considered.   

 

 

1. INTRODUCTION 

 

G. V. Kolosov in 1909 [1], when he was solving a problem from the theory 

of elasticity, introduced the expressions  

   
ˆ1

2
[ ( )u v v u dW

x y x y dz
i   

   
     and  

   
ˆ1

2
[ ( )u v v u dW

x y x y dz
i   

   
        

known as operatory derivatives of a complex function  ( ) ( , )W W z u x y   

( , )iv x y  from a complex variable z x iy   and  z x iy  , respectively. The 

operator rules for these derivatives are given in the monograph of Г. Н. 

Положиǔ [2] (pages 18-31). In the mentioned monograph, are also defined the 

so called operatory integrals 

( )f z dz


   and  ( )f z dz


  

by z x iy   and z x iy  , respectively, from the complex function  ( )f f z  

in the area D , where their operatory rules are proven as well, page 32 - 41.  

 

______________________________________________ 

2010 Mathematics Subject Classification. 34M45, 35Q74. 

Key words and phrases. areolar derivative, areolar equation, solution, analytic function, 

Vekua equation. 
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2. FORMULATION OF THE PROBLEM  

 

Main object of this research is the Vekua equation 

 d̂W
dz

АW BW F       (1) 

where the functions ( )A A z , ( )B B z , ( )F F z  are arbitrary functions from 

complex variable without any limitation or condition that they have to fulfill.  

 

Because in general case there is no method for finding its general solution, 

we explore the idea to find some solution of the Vekua equation (1) in the 

following form:  

 ( ( ), ( ))W W z z      (2) 

where ( )z   is antyanalytic function and ( )z   is analytic function.  

 

3. MAIN RESULT 

  

Case 1. Let 
( )

( )

z

z
W




  be a solution of the equation (1) (and is from the form 

(2)), i.e. it is a ratio from one antyanalytic and one analytic function. That means 

that this function satisfies the equation (1), so if we find the operator derivative 

by z  from W and replace it in (1) we get: 

 

ˆˆ ˆ ( ) ( )1
( ) ( )

( )
z d zdW d

dz dz z z dz

 

 
    

ˆ ( ) ( ) ( )1
( ) ( ) ( )

( ) ( )
d z z z

z dz z z
A B F

  

  
     

ˆ ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

d z

dz
z A z z B z z F z z


           

 

If we make one more transformation, we can get a proof to one more interesting 

statement. If we add on both sides the expression 
ˆ ( )

( )
d z

dz
z


   and given into 

consideration that 

ˆ ˆ ˆ( ( ) ( )) ( ) ( )
( ) ( )

d z z d z d z

dz dz dz
z z

   
 


     

then, we get 

ˆ ˆ( ( ) ( )) ( )
( ) ( ( ) ( )) ( ) ( ) ( ) ( )

d z z d z

dz dz
z A z z B z z F z z

  
      


       

So, if  
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 ( ) ( ) 1z z    and 
ˆ ( )

( ) 0
d z

dz
z


      (3) 

we get another solution to the Vekua equation (1), i.e. the function 

1 ( ) ( )W z z    which is not from the form (2). It is an antyanalytic function. 

If we want a solution that 0W  , then   0z  , which means that the second 

condition in (3) is 
ˆ ( )

0
d z

dz


 .    

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 1. Let ( )z   be an antyanalytic function and ( )z   be an 

analytic function. If 
( )

( )

z

z
W




  is a solution to the Vekua equation (1), then 

1 ( ) ( )W z z   is also a solution to the Vekua equation (1), if the conditions (3) 

are satisfied.  

 

Case 2. Let 
( )

( )

z

z
W




  be a solution of the equation (1) (and is from the form 

(2)), i.e. it is a ratio from one analytic and one antyanalytic function. That means 

that this function satisfies the equation (1), so if we find the operator derivative 

by z  from W and replace it in (1) we get: 

 

2

ˆˆ ˆ ˆ( ) ( ) ( )1
( ) ( ) ( )

( ) ( ) ( )
z z d zdW d d

dz dz z dz z dzz
z

  

  
      

2

ˆ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

z d z z z

dz z zz
A B F

   

 
      

   
ˆ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

z d z

z dz
z A z z B z z F z z

 


               

 

If we make one more transformation, we can get a proof to another 

interesting statement. Here we expect a new solution of the Vekua equation to 

be the function 1 ( ) ( )W z z   . It is analytic function, so its areolar derivative 

is 0. So, if we add on both sides the expression 1d̂W

dz
, then we get 

 
ˆ ˆ( ) ( ) ( ( ) ( ))

( )
( ( ) ( )) ( ) ( ) ( ) ( )

z d z d z z

z dz dz
z A z z B z z F z z

   


               

So, if  
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( ) ( ) 1z z    and 
ˆ( ) ( )

( )
( ) 0

z d z

z dz
z

 


      (4) 

we get another solution to the Vekua equation (1), i.e. the function 

1 ( ) ( )W z z    which is not from the form (2). It is an analytic function. 

Again, the second condition in (4), means that 
ˆ ( )

0
d z

dz


 .  

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 2. Let ( )z   be an antyanalytic function and  ( )z   be an 

analytic function. If 
( )

( )

z

z
W




  is a solution to the Vekua equation (1), then 

1 ( ) ( )W z z    is also a solution to the Vekua equation (1), if the conditions 

(4) are satisfied.  

 

Case 3. Let ( ) ( )W z z   is a solution of the equation (1) (and is from the 

form (2)), i.e. it is a product from one antyanalytic and one analytic function. 

That means that this function satisfies the equation (1), so if we find the 

operator derivative by z  from W and replace it in (1) we get: 

ˆˆ ˆ ( )
( ( ) ( )) ( )

d zdW d
dz dz dz

z z z


      

ˆ ( )
( ) ( ( ) ( )) ( ( ) ( ))

d z

dz
z A z z B z z F


         

ˆ ( ) ( ) ( )1 1
( ) ( ) ( ) ( ) ( )

d z z z

z dz z z z z
A B F

  

    
     

 

If we make one more transformation, we can get a proof to one more interesting 

statement. If we add on both sides the expression 
2

ˆ( ) ( )

( )

z d z

dzz

 


   and given into 

consideration that 

2 2

ˆ ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( ) ( )1 1
( ) ( )( ) ( )

( ) ( ( ) ( ) )
z d z d z d z z d zd

dz z dz dz z dz dzz z
z z

     

  
        

then, we get 

 
2

ˆˆ ( ) ( ) ( ) ( ) ( )1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
z z z z d zd

dz z z z z z dzz
A B F

    

     
       

So, if  

 ( ) ( ) 1z z    and 
2

ˆ( ) ( )

( )
0

z d z

dzz

 


      (5) 
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we get another solution to the Vekua equation (1), i.e. the function 
( )

1 ( )

z

z
W




  

which is not from the form (2). Again, (5) means that 
ˆ ( )

0
d z

dz


 . 

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 3. Let ( )z   be an antyanalytic function and  ( )z   be an 

analytic function.  If ( ) ( )W z z   is a solution to the Vekua equation (1), then 

( )
1 ( )

z

z
W




  is also a solution to the Vekua equation (1), if the conditions (5) are 

satisfied.  

 

Note. As we can see in all three cases, the second twin solution is not from the 

form (2). The functions are different, but the conditions are similar. 
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REMARK ABOUT CHARACTERIZATION  

OF 2-INNER PRODUCT 

 

Katerina Anevska
1
 and Risto Malčeski

2 

 

 

Abstract. Characterization of 2-inner product is focus of interest of 

many mathematicians. In this paper proofs of two characterizations of 

2- inner product, which are actually consequences of the Theorem 1 

[15], are given. Also, generalizations of already know Hayashi (see 

[4], pg. 297) and Zarantonello ([5]) inequalities are fully elaborated. 

 

 

1. INTRODUCTION 

 

The concepts of 2-norm and 2-inner product are two-dimensional analogies 

to the concepts of norm and inner product. S. Gähler ([13]), 1965, gave the term 

of 2-norm and R. Ehret ([11]), 1969, proved the following: 

If ( ,( , | ))L    is a 2-pre-Hilbert space, then  

1/2|| , || ( , | )x y x x y ,             (1) 

for all ,x y L , defines a 2-norm. So, we get the 2-normed space ( ,|| , ||)L    and 

furthermore for all x, y, z ϵ L the following equalities are satisfied:  

2 2|| , || || , ||

4
( , | )

x y z x y z
x y z

  
 ,           (2) 

2 2 2 2|| , || || , || 2(|| , || || , || )x y z x y z x z y z     ,    (3) 

The equality (3) is analogue to the parallelogram equality, and it is said to be 

parallelepiped equality. Moreover, 2-normed space L  is 2-pre-Hilbert if and 

only if the equality (3) is satisfied for all , ,x y z L . 

The papers [1]-[3], [6], [12], [14]-[16] consist of many proven 

characterizations about 2-inner product.  

________________________________________________ 
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Theorem 1 ([15]). Let ( ,|| , ||)L    be a real 2-normed space. Then, L  is a 2-pre-

Hilbert space if and only if the following condition is satisfied:  

if 3n  , 1 2, ,..., ,nx x x z L  and 1 2, ,..., na a a  are real numbers such that 

1

0
n

i
i

а


 , then 

2 2

1 1

|| , || || , ||
n

i i i j i j
i i j n

а x z а а x x z
   

    . ■     (4) 

 

2. CHARACTERIZATION OF 2-PRE-HILBERT SPACE 

 

The characterization of 2-inneer product by applying the Euler-Lagrange 

type of equality is elaborated in [6] or in other words generalization of Corollary 

2.2 [8], is elaborated. The following theorem is one other proof of the above 

stated generalization. 

 

Theorem 2 ([6]). Let ( ,|| , ||)L    be a real 2-normed space. The 2-norm is 

generated by 2-inner product if and only if the following equality is satisfied 

2 2 22|| , || || , || || , |||| , ||ax by z bx ay z y zx z 

   

 
   ,       (5) 

for all , ,x y z L  and for all ,a bR , 2 2, 0, a b       .  

Proof. Let L  be a real 2-normed space such that for all , ,x y z L  and for all 

,a bR , 2 2, 0, a b        the equality (5) is satisfied. For 

1a b     , the equality (5) is transformed to an equality which is 

equivalent to the parallelepiped equality, (3), what actually means that L  is 2-

pre-Hilbert space in which the 2-inner product is defined as (2) and moreover 

(1) holds true. 

Conversely, let 2-inner product, which determines the 2-norm, exist and let 

, ,x y z L  and ,a bR , , 0    be such that 2 2a b     is satisfied. For  

1 2 3 1 2 3, , , , , 0a b a ba a a x x x y x
  

        

theorem 1 is transformed as the following  

2|| , || ( ) ( )2 2 2|| , || || , || || , ||
ax by z a a b b a b abx z y z x y z

   

  
    .    (6)  

Further, for  
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1 2 3, , ,
b b aaa a a

  

  


     1 ,x x  2 3, 0x y x   

theorem 1 is transformed as the following  

2|| , || ( ) ( )2 2 2|| , || || , || || , ||
bx ay z b b a a b a abx z y z x y z

     

   

  
    .   (7) 

Finally, if we summarize the equalities (6) and (7) and have also on mind that 

2 2a b     we get the following  

2 2

2 2 2 2

22

|| , || || , || ( ) ( ) 2

( ) ( ) 2

2 2

|| , |||| , ||

( ) || , ||

( ) || , ||

|| , || || , ||

,

ax by z bx ay z a a b b b a

b a b a b a

a b a b

y zx z

x z

y z

x z y z

   

   

 

 

   

 

 

   

 

 

   

 

 

 

 

i.e. the equality (5) is satisfied. ■ 

 

The following theorem is actually generalization of M. S. Moslehian and J. 

M. Rassias (Corollary 2.2, [9]) result.  

 

Theorem 3.A real 2- normed space ( ,|| , ||)L    is 2- pre-Hilfert space if and only 

if for each 2n   and for all 1 2, ,..., ,nx x x z L  the equality (8) is satisfied  

2 2
1 1

{ 1,1} 2 { 1,1} 2

|| , || (|| , || || , ||)

i i

n n

i i i i
a i a i

x a x z x z a x z
     

      .    (8) 

Proof. Let (8) be satisfied for each 2n   and for all 1 2, ,..., ,nx x x z L . For 

2,n   1x x  and 2x y  the equality (8) is transformed to the parallelepiped 

equality (3). That actually means that L  is 2-pre-Hilbert space in which the 2-

inner product is defined as (2) and furthermore (1) holds true. 

Conversely, let a 2-normed space ( ,|| , ||)L    be a 2-pre-Hilbert space, 2n   and 

1 2, ,..., ,nx x x z L . 

For 1
2

(1 )
n

n i
k

a a


     and 1 0nx   , Theorem 1 is transformed as the 

following: 
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1
2 2

1 1
2 2

2 2
1

2 2

2 2
1

2 2

2 2 2
1

1 2 2 2

1
2

|| , || || , ||

(1 )(|| , || || , || )

|| , || || , ||

|| , || || , || || , ||

||

n n

i i i i
i i

n n

k i i
k i

n

i i i j i j
i i j n

n n n n

i k k i i
i k k i

i k

i i
i

x a x z x a x z

a x z a x z

a x x z а а x x z

x z x z a a a x z

a x x



 

 

   

   




  

   

   

   

 

 

 

 

   

2 2

2

, || || , ||
n

i j i j
i j n

z а а x x z
  

  

 

and since { 1,1}ia   , for 2,3,...,i n , we get 12n equalities of the above type. 

By summarizing the such obtained equalities, we get the following. 

2 1 2 2
1 1

{ 1,1} 2 1 { 1,1} 2

2

, { 1,1} 2 2

2
1

, { 1,1} 2

2

, { 1,1}2

|| , || 2 || , || || , ||

|| , ||

|| , ||

|| , ||

i k

k i

k i

k i

n n n
n

i i i k
a i i a k

n n

k i i
a a k i

i k

n

i i
a a i

i j i j
a a i j n

x a x z x z a x z

a a x z

a x x z

а а x x z



      

   


  

    

   

 

  

 

    

  

 

 

 

1 2

1

2
1

{ 1,1} 2

2 || , ||

(|| , || || , ||) ,

i

n
n

i
i

n

i i
a i

x z

x z a x z





  



 



 

 

i.e. the equality (8) holds true. ■ 

 

3. GENERALIZATION OF HAYASHI AND ZARANTONELLO INEQUALITIES  

 

The following theorems, are actually generalization of two already known 

equalities, obtained by using theorem 1. Thus, we will firstly give a 

generalization of Hayashi (see [4], pg. 297) inequality for complex numbers. 
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Theorem 4. Let ( ,|| , ||)L    be a real 2-normed space. Then 

1 2 1 2 1 2 2 3 3 1|| , || || , || || , || || , || || , || || , ||
cyclic

x x z x x z x x z x x z x x z x x z            (9) 

for all 1 2 3, , , ,x x x x z L . The inequality is transformed to an equality, if at least 

one of the sets 1 2 3{ , },{ , },{ , }x x z x x z x x z    is linearly dependent or more 

over if the set  

2 3 3 1 1 2

1 2 3

|| , || || , || || , ||
1 2 3|| , || || , || || , ||

{ ( ) ( ) ( ), }
x x z x x z x x z

x x z x x z x x z
x x x x x x z

  

  
      

is linearly dependent.  

Proof. Let at least one of the sets 1 2 3{ , },{ , },{ , }x x z x x z x x z    be linearly 

dependent. With no loose of the generality, let 1{ , }x x z be such the set, i.e. 

1x x z  . Then, the properties of 2-norm imply the following 

1 2 1 2 2 3 2 3

1 2 1 3 2 3

1 2 2 3 3 1

|| , || || , || || , || || , || || , || || , ||

|| , || || , || || , ||

|| , || || , || || , ||,

cyclic

x x z x x z x x z x x z x x z x x z

x z x z x z x z x x z

x x z x x z x x z

 

          

       

     



 

The above means that (9) is an equality.  

Let’s suppose that the sets 1 2 3{ , },{ , },{ , }x x z x x z x x z    are linearly 

independent. For 
3

4
1

i
i

a а


   and 4x x  in Theorem 1, we get that for all 

1 2 3, , , ,x x x x z L  and for all 1 2 3, ,a a a R  the equality 

3 3 3 3
2 2

1 1 1 1 1 3

|| , || ( ) ( || , ||) || , ||i i i i i i i j i j
i i i i i j

а x x а z а а x x z а а x x z
      

           

holds true. 

The right side of the above equality is nonnegative. Therefore, for all 

1 2 3, , , ,x x x x z L  and for all 1 2 3, ,a a a R  the inequality (10) holds true 

3 3
2

1 1 1 3

( ) ( || , ||) || , ||i i i i j i j
i i i j

а а x x z а а x x z
    

      .    (10) 

For  

2 3 3 1 1 2

1 2 3

|| , || || , || || , ||
1 2 3|| , || || , || || , ||

, ,
x x z x x z x x z

x x z x x z x x z
a a a

  

  
    

the inequality (10) is transformed as the followings 

|| , || || , || || , || 2
|| , || || , || || , ||

|| , || || , || || , ||
i j j k k i

k i j

x x z x x z x x z
i j k i jx x z x x z x x z

i j k i i j k i i j k i

x x z x x z x x z
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1 2 2 3 3 1

1 2 3

1 2

|| , ||

|| , ||

|| , || || , || || , ||

|| , || || , || || , ||

|| , || || , ||

|| , ||

|| , || || , ||

|| , || || , ||

i j

k

i j

k

x x z

i j kx x z
i j k i i j k i

x x z x x z x x z
i j kx x z x x z x x z

i j k i

x x z x x z

x x z
i j k i

x x z x x z

x x z x x z




     

    

    
  

  


  

   

   



 



 2 3 3 1

1 2 3

|| , || || , ||

|| , || || , || || , ||
.

x x z x x z

x x z x x z x x z

  

    

  

Clearly, the last inequality is equivalent to the inequality (9). The proof implies 

that the inequality (9) might be transformed to an equality if (10) is an equality, 

i.e. if the set 
3 3

1 1

{ , }i i i
i i

а x x а z
 

   is linearly dependent, that is if the set  

2 3 3 1 1 2

1 2 3

|| , || || , || || , ||
1 2 3|| , || || , || || , ||

{ ( ) ( ) ( ), }
x x z x x z x x z

x x z x x z x x z
x x x x x x z

  

  
      

is linearly dependent. ■ 

 

On the end of our considerations we will generalize the Zarantonello ([5]), 

inequality, i.e. we will prove the following theorem. 

 

Theorem 5. Let L  be a real 2-pre-Hilbert space and :f L L  be a function 

such that  

|| ( ) ( ), || || , ||f x f y z x y z   ,         (11) 

holds true, for all , ,x y x L , Then for all 1 2, ,..., 0na a a  , such that 
1

1
n

i
i

a


  

and for all 1 2, ,..., ,ny y y z L   

2 2 2

1 1 1

|| ( ) ( ), || (|| , || || ( ) ( ), || )
n n

i i k k i k i k i k
i k i k n

a f y f a y z a a y y z f y f y z
    

        (12) 

holds true.  

Proof. For  

( ), 1,2,..,.i ix f y i n  , 1
1

( )
n

n i i
i

x f a y


   

and 1 1na    , in Theorem 1 and then by using the inequality (11) and the 

properties of 2-norm, we get that for all 1 2, ,..., 0na a a   such that 
1

1
n

i
i

a


  and 

for all 1 2, ,..., ,ny y y z L , the following holds true  
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2

1 1

2 2

1 1 1

2 2

1 1 1

2

1 1 1

|| ( ) ( ), ||

|| ( ) ( ), || || ( ) ( ), ||

|| , || || ( ) ( ), ||

|| , || || (

n n

i i k k
i k

n n

i i k k i k i k
i k i k n

n n

i i k k i k i k
i k i k n

n n n

i k i k k i k i
i k k

a f y f a y z

a f y f a y z а а f y f y z

a y a y z а а f y f y z

a a y a y z а а f y

 

    

    

  

 

   

   

  

 

  

  

  
2

1

2 2

1 1 1

) ( ), ||

|| ( ), || || ( ) ( ), || .

k
i k n

n n

i k i k i k i k
i k i k n

f y z

a a y y z а а f y f y z

  

    



   



  

 

On the other hand, for 1, 1,2,..., , 0k i k nx y y k n x      and 1 1na     in 

Theorem 1 and also by using that 0ia  , for 1,2,...,i n , we get that  

2 2 2

1 1 1

2

1

|| ( ), || || , || || , ||

|| , || .

n n

k i k k i k i j i j
k k i j n

n

k i k
k

a y y z a y y z а а y y z

a y y z

    



    

 

  



 

Finally, the last two inequalities imply the inequality (12). ■ 
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ABOUT THE ACCORDANCE BETWEEN THE CANONICAL VEKUA 

DIFFERENTIAL EQUATION AND THE GENERALIZED 

HOMOGENEOUS DIFFERENTIAL EQUATION   

 

Slagjana Brsakoska   

 

 

 

Abstract. In the paper two equations, the canonical Vekua differential 

equation and the generalized homogeneous differential equation, are 

considered. The main result is the theorem with the condition for the 

accordance between this two equations.  

 

 

 

1. INTRODUCTION 

 

The equation  

d̂W
dz

AW BW F       (1) 

where ( )A A z , ( )B B z  and ( )F F z  are given complex functions from a 

complex variable z D   is the well known Vekua equation [1] according to 

the unknown function ( )W W z u iv   . The derivative on the left side of this 

equation has been introduced by G.V. Kolosov in 1909 [2]. During his work on 

a problem from the theory of elasticity, he introduced the expressions  

 
ˆ1

2
[ ( )]u v v u dW

x y x y dz
i   

   
       (2) 

and 

ˆ1
2
[ ( )]u v v u dW

x y x y dz
i   

   
       (3) 

 

___________________________________________________ 
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known as operator derivatives of a complex function ( ) ( , )W W z u x y  

( , )iv x y  from a complex variable z x iy   and z x iy  corresponding. The 

operating rules for this derivatives are completely given in the monograph of Г. 

Н.Положиǔ [3] (page18-31). In the mentioned monograph are defined so cold 

operator integrals ( )f z dz


  and ( )f z dz


  from z x iy   and  z x iy   

corresponding (page 32-41). As for the complex integration in the same 

monograph is emphasized that it is assumed that all operator integrals can be 

solved in the area D. 

In the Vekua equation (1) the unknown function ( )W W z  is under the sign 

of a complex conjugation which is equivalent to the fact that ( )B B z  is not 

identically equaled to zero in D. That is why for (1) the quadratures that we 

have for the equations where the unknown function ( )W W z  is not under the 

sign of a complex conjugation, stop existing.  

This equation is important not only for the fact that it came from a practical 

problem, but also because depending on the coefficients A, B and F the equation 

(1) defines different classes of generalized analytic functions. For example, for 

( ) 0F F z   in D the equation (1) i.e. 

  d̂W
dz

AW BW     (4) 

which is called canonical Vekua equation, defines so cold generalized analytic 

functions from fourth class; and for 0A  and 0F   in D, the equation (1) i.e. 

the equation d̂W
dz

BW  defines so cold generalized analytic functions from 

third class or the (r+is)-analytic functions [3], [4]. 

Those are the cases when 0B  . But if we put 0B  , we get the following 

special cases. In the case 0A , 0B   and 0F   in the working area D  

the equation (1) takes the following expression 
ˆ

0dW
dz

  and this equation, in the 

class of the functions ( , ) ( , )W u x y iv x y   whose real and imaginary parts have 

unbroken partial derivatives , ,x y xu u v    and yv  in D, is a complex writing of the 

Cauchy - Riemann conditions. In other words it defines the analytic functions in 

the sense of the classic theory of the analytic functions. In the case 0B   in D 

i.e. d̂W
dz

AW F   is the so cold areolar linear differential equation [3] (page 

39-40) and it can be solved with quadratures by the formula: 
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( ) ( )

[ ( ) ( ) ]

A z dz A z dz

W e z F z e dz

 

 
    . 

Here ( )z  is an arbitrary analytic function in the role of an integral 

constant. 

 

2. FORMULATION OF THE PROBLEM AND MAIN RESULT 

 

In the paper [5], the following lemma is proved.  

 

Lemma. The equations  

 
ˆ

( , )dW
dz

f z W      (5) 

and  

ˆ
( , )dW

dz
g z W      (6)  

where 
ˆ

0
df

dW
 , have common solutions if and only if   

 
ˆ ˆ ˆ ˆ ˆdf df dg dg dg

dz dW dz dW dW
g f g    .   (7) 

It is assumed that the operator derivatives in (7) exist and that they are 

continuous functions in the working area D from the complex plane.  
 

In this paper we are examining the accordance between the canonical Vekua 

equation (4), on one side and the generalized homogeneous differential equation 

ˆ
( )dW W

dz z
      (8) 

on the other side, where  z   is a given complex functions from a complex 

variable z D  , such that 
ˆ

0
d

dW


 . The canonical Vekua equation (4) is an 

equation of type (6) where  

( , )g z W AW BW      (9)  

and the generalized homogeneous differential equation (8) is an equation of 

type (5), where 

( , ) ( )W
z

f z W  .    (10)  
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Here, the function  f  is an analytic function according to W , which means that 

ˆ
0

df

dW
 . That is the only condition to be accomplished, so that we can use the 

mentioned lemma. 

If we calculate all the derivatives in (7), we get that 

ˆ ˆˆ ˆˆ 1

ˆ ˆ ˆˆ ˆ

, ( ) ,

, , .

df dfd dd W
dz dz dW dW z dW z

dg dg dgdA dB
dz dz dz dW dW

W W A B

 
   

   

 

And if we put them in (7) we get that 

 
ˆ ˆ ˆ ˆ1 ( ) ( ).
d d dA dB
dz dW z dz dz

AW BW W W A B AW BW
 

         

Now we write the last equation in the following form 

 
ˆ ˆ ˆˆ ˆ2( | | ) ( ) 0.
d d ddA dBA B
dW z dz dW z dz dz

W B W AB A
  

           

This linear combination is true only if the following system of equation is 

satisfied 

 

ˆ ˆ 2

ˆ ˆ

ˆ

| | 0

0 .

0

d dAA
dW z dz

d dBB
dW z dz

d

dz

B

AB

A









   




   

  


    (11) 

If we eliminate the derivative 
d̂

dW


 from the first and the second equation in 

the system (11), we get  

ˆ ˆ 2( | | )
d dAz
dW A dz

B

   

ˆ ˆ2

ˆ ˆ 2 2

( | | ) 0

| | | | 0

dA dBz B
A dz z dz

dA dB
dz dz

B AB

B A B B B A

    

   

 

Because of the fact that 
2

ˆ ˆ ˆ1( ) ( ),d dA dBA
dz B dz dzB

B A   we get that 

2 2

ˆ2 2 2

ˆ | | | |

( ) (| | | | ) 0

( ) 0

d A
dz B

B Ad A
dz B B

B B B A



  

 

 

or  

ˆ
( ) 0d A A

dz B B
B A      (12) 
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which is the condition between the coefficients in the Vekua equation (4) in 

order to has common solutions with the equation (8). 

The third equation in the system (11) is an areolar equation which can be 

solved, i.e.  

   

 

ˆ
1

ln ( ) ln

d

dz

W
z

A

A z dz z








 

  

 

  ( ) exp( ( ) )W
z

z A z dz


         (13) 

Here ( )z  is an arbitrary analytic function in the role of an integral 

constant. 

 

So, we have proved the following  

 

Theorem. The Vekua equation (4) and the generalized homogeneous 

equation (8) have common solutions if and only if the condition (12) is fulfilled 

and the relation between the coefficients of the two equations are given with 

(13). 

 

Note 1. The condition (12) that we got, works for example if A B .  

 

Note 2. In [6], we can see the condition between the coefficients in the 

Vekua equation (1) (and (4) also), in order to has common solutions with the 

generalized linear equation and the relation between its coefficients. If we 

compare the theorems, they have similar statement, but different conditions and 

relations that we mentioned. Further more, in [6] both the equations (1) and (4) 

are considered and in this case only the equation (4) is considered. This refers to 

the easier manipulation with the generalized linear equation in comparison with 

the generalized homogeneous equation. 
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ON (3,2,)-S-K-METRIZABLE SPACES 
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1
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2
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3
 

 

 

Abstract. For a given (3,2, ) - metric d on a set M, we show that any      

(3,2, ) -S-K-metrizable space has an open refinement which is both locally 

finite and  -discrete  

 

 

1. INTRODUCTION  

 

If we review historically the geometric properties, their axiomatic classification 

and the generalization of metric spaces we can see that, they have been subject of 

interest of great number of mathematicians and from their work a lot of  have 

been developed. We will mention some of them: K. Menger ([14]), V. Nemytzki, 

P. S. Aleksandrov ([16], [1]), Z. Mamuzic ([13]), S. Gähler ([11]), A. V. 

Arhangelskii, M. Choban, S. Nedev ([2], [3], [17]), R. Kopperman ([12]), J. Usan 

([18]), B. C. Dhage, Z. Mustafa, B. Sims ([6], [15]). The notion of ( , , )n m  -

metric is introduced in [7]. Connections between some of the topologies induced 

by a (3,1, ) -metric   and topologies induced by a pseudo-o-metric, o-metric and 

symmetric are given in [8]. For a given (3, , )j  -metric d  on a set M , {1,2},j   

seven topologies ( , ),  ( , ),  ( , ),  ( , ),  ( , ),  ( , )G d H d D d N d W d S d       and ( , )K d  on 

,M  induced by ,d  are defined in [4], and several properties of these topologies 

are shown. 

In this paper we consider only the topologies ( , )S d  and ( , )K d  induced by a 

(3,2, ) -metric d  and for ( , ) ( , )S d K d     we prove that any open cover of 

a (3,2, ) -S-K-metrizable space ( , )M   has: a) an open refinement which is both 

locally finite and  -discrete, b)  -discrete base, and c) a (3,2, ) -S-K-metri- 

_______________________________________ 
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zable space ( , )M   is perfectly normal.  

 

2. SOME PROPERTIES OF (3,2, ) -S-K-METRIZABLE SPACES  

 

In this part we state the notions (defined in [4]) used later.  

Let M  be a nonempty set, and let 3
0: [0, ).d M     We state four condi-

tions for such a map. 

( 0)M  ( , , ) 0,d x x x   for any ;x M   

( )P      ( , , )    ( , , )    ( , , )d x y z d x z y d y x z  , for any , , ;x y z M  

( 1)M   ( , , )  ( , , )    ( , , )    ( , , ),d x y z d x y a d x a z d a y z    for any , , , ;x y z a M  and 

( 2)M   ( , , )  ( , , )    ( , , )    ( , , ),d x y z d x a b d a y b d a b z    for any , , , , .x y z a b M  

 

For a map d  as above let 3   {( , , ) | ( , , ) ,  ( , , ) 0}.x y z x y z M d x y z     The set 

  is a (3, )j -equivalence on ,M  as defined and discussed in [7], [4]. The set 

{( , , ) |  }x x x x M    is a (3, )j -equivalence on ,M  1,2,j   and the set 

{( , , ) |  , }x x y x y M   is a (3,1) -equivalence, but it is not a (3,2) -equivalence 

on .M  The condition ( 0)M  implies that .   

 

Definition 1. Let  3
0: [0, )d M   

 
and   be as above. If d  satisfies ( 0)M , 

( )P  and ( 2)M , we say that  d  is a (3,2, ) -metric on     

 

Let d  be a (3,2, ) -metric on ,M x M  and 0.   As in [4], we consider 

the following   ball, as subsets of :M  

( , ) { | , ( , , ) }L x y y M d x y y     -“little”  -ball with center in x  and radius .  

 

Among the others, a (3,2, ) -metric d  on M  induces the following topolo-

gies as in [4]:  

1) ( , )K d -the topology generated by all the  -balls ( , )L x  , i.e. the topolo-

gy  whose base is the set of the finite intersections of  -balls ( , )L x  ; 

2) ( , )S d -the topology defined by: ( , )U S d  iff ,xU  0   such that 

( , )L x U  .    

 

Proposition 1. The ball ( , ) ( , )L x S d  , for any x  on M  and 0.    
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Proof. It is enough to show that for any ( , )y L x   there is 0,   such that 

( , ) ( , ).L y L x   Let ( , )y L x   and ( ( , , )) / 4.d x y y    Then, for any 

( , )z L y   we have: 

( , , ) ( , , ) 2 ( , , )

( , , ) 4 ( , , )

( , , ) 4 .

d x z z d x y y d z y y

d x y y d y z z

d x y y  

 

 

  

 

This implies that ( , ),z L x   i.e. ( , ) ( , ).z L y L x      

 

From the proposition 1, it follows that  ( , ) ( , )S d K d  , for any (3,2, ) -

metric d  on M   

 

Definition 2. We say that a topological space ( ),M   is (3,2, ) -S-K-metrizable 

via a (3,2, ) -metric d on M, if  =(S,d)=(K,d).  

 

In the following theorem, one of the most important properties of         

(3,2, ) -S-K-metrizable space is established. 

 

Let ( ),M   be a (3,2, ) -S-K-metrizable topological space. 

 

Proposition 2. Any open cover of a (3,2, ) -S-K-metrizable space has an open 

refinement which is both locally finite and  -discrete. 

Proof. Let d  be a (3,2, ) -metric on M and ( , ) ( , ).S d K d     Let                

U = { sU | s S } be an open cover of a (3,2, ) -S-K-metrizable space ( ),M  , 

and let < be a well-ordering relation on the set .S  Define inductively families   

V n ,{ | ,  }s nV s S n     of subsets of ( ),M   by letting  

, ( , / ,)1 10n
s nV L x  

where the union is taken over all points x M  satisfying the following 

conditions: 

s is the smallest element of S such that ,sx U                (1) 

,t jx V  for j n  and ,t S                             (2) 

,11/1( )0 .n
sL x U                                           (3) 

It follows from the definition of ,s nV  that the sets ,s nV  are open, and (3) 

implies that , .s n sV U  Let  .y M  Let s be the smallest element of S such that 
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.sy U  Then there is n  such that ,11/1( )0 .n
sL y U  It is clear that, we 

have  ,t jy V  for j n  and a t S  or , .s ny V  Hence, the union V = { V n

| }n   is an open refinement of the cover U { | }sU s S  . 

 We will prove that for any     if                     and        then  

1 2 2( ,  ,  ) 1/10nd y y y   and 1 1 2( ,  ,  ) 1/10 ,nd y y y                      (4) 

and this will show that the families V n  are discrete, because any  
11/10n

-L-

ball meets at most one member of V n
. 

  Let 21s s . By the definition of 
1,s nV  and 

2 ,s nV  there are points 1x  and 2x   

satisfying (1), (2) and (3) given above, such that 
11 1 ,( ,1  /10 ) n

s ny L x V   and 

22 2 ,( ,1  /10 ) .n
s ny L x V   From (3) it follows that 

11( ,1  1/10 ) ,n
sL x U  and 

from (1) we see that 
12 .sx U  Hence, 1 2 2( , , ) 11/10 .nd x x x   The inequalities  

 

1 2 2 1 1 1 2 1 1

1 1 1 2 2 2 1 2 2

1 2 2

11/10 ( , , ) ( , , ) 2 ( , , )

( , , ) 2 ( , , ) 4 ( , , )

3 /10 4 , , ,

n

n

d x x x d x y y d x y y

d x y y d x y y d y y y

d y y y

  

  

 

 

imply that 1 2 2( ,  ,  ) 2 /10 1/10 .n nd y y y     

 Also the inequalities,    

   

   

1 2 2 1 1 1 2 1 1

1 1 1 2 2 2 1 2 2

1 2 2 1 1 2

11/10 ( , , ) , , 2 , ,

( , , ) 2 ( , , ) 4 ( , , )

3 /10 4 , , 3 /10 8 , , ,

n

n n

d x x x d x y y d x y y

d x y y d x y y d y y y

d y y y d y y y

  

  

   

 

imply that 1 1 2( ,  ,  ) 1/10nd y y y  .  

From the latter follows the proof of (4)   

  Furthermore, it is enough to show that for each t S  and for each pair 

, ,k j    

  if ,( ,1  /10 )k
t jL y V  then ,( ,1  /10 )k j

s nL y V    

for n k j   and .s S                       (5) 

 From the definition of ,s nV  we have , , 1,s n s nV V  then , , 1t j t jV V   for 

each t S  and each .j  From (2) it follows that each x  of ,s nV   

( ,1/10 ),nL x  ,t jx V  for j n . Hence, for n k j k    and ( ,1  /10 )kL y   
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,t jV  it follows that for each x  of the union ( ,1/10 ),   ( , , ) 1/10 .n kL x d y x x    

We will show that ,( ,1  /10 )k j
s nL y V    for .n k j   Let ,y M  then 

there are , , k j t  such that ,( ,1  /10 )k
t jL y V  and .n k j   For V m  discrete 

family  and ,m k j   there is m  such that ,( , )m s mL y V    for one , .s m   

Let { |1 }mmin m k j      then ,( , ) s mL y V    for all   ,m k j   i.e. 

,( ,1  /10 )k j
s nL y V    for .n k j   From the latter it follows that V n  is     

-discrete and locally finite. Hence, V { V | }n n   is -discrete and 

locally finite.   

 

Proposition 3. Any (3,2, ) -S-K-metrizable space (M,) has a  -discrete base. 

Proof. Let d be a (3,2, ) -metric on M and ( , ) ( , ).S d K d     For ,n let             

U { ( ,1/ ) | }n L x n xM  be an open cover of M  and let V n  be -discrete 

refinement obtained in proposition 2. The definition of ( , )S d  and )( ,K d   

implies that U { U |  }n n  is a base for =(S,d)=(K,d). Since each V n  

is -discrete refinement of U n , it follows that V { V |  }n n  is -discrete 

refinement of U. Hence, V  is -discrete base of ( , ).M     

 

Corollary 1. Any (3,2, ) -S-K-metrizable space ( , )M   has a  -locally finite 

base. 

 

We will prove that the existence of a  -locally finite base is also sufficient 

for metrizability of a (3,2) -S-K-metrizable space ( , )M  .   

 

Proposition 4. Any (3,2) -S-K-metrizable space ( , )M   is perfectly normal. 

Proof. Let d be a (3,2) -metric on M and ( , ) ( , ).S d K d     Let V { V n  

|  },n  where the families V n  are a locally finite, be a base for a space 

( , )M  . Consider an arbitrary open set .W M  For any x W  there is a 

natural number ( )n x  and an open set xU V ( )n x  such that .x xx U U W    

Letting { | ( ) }n xW U n x n   we obtain a sequence 1 2, , ,nW W W  n  of 

open subsets of M  such that { | }nWW n   and by property: if { }s s SA   is a 

locally finite family, then the family { }s s SA   also is locally finite, we have 
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nW W  for .n  Normality of (M,) is proven in [9]. Since { |nW W  

}n , the space (M,) is perfectly normal.  

 

Proposition 5. If    , then (M,) is metrizable. 

Proof. For    , and the fact that (M,) is regular and has  -locally finite 

base then from the metrization theorem of Nagata-Smirnov it follows that  (M,) 

is metrizable. 
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ALGEBRAIC REPRESENTATION OF A CLASS OF 

HOMOGENOUS STEINER QUADRUPLE SYSTEMS 

 

Lidija Goračinova-Ilieva
1
, Emilija Spasova Kamčeva

2
 

 

 

Abstract A Steiner system ( , , )S t k v
  

is a pair ( , )Q B  of
  

v -element set Q
  

and 

a collection B  of its k -element subsets (blocks), such that every t -element 

subset of Q  is contained in exactly one block. Systems (2,3, )S v
 
are Steiner 

triple systems ( )STS  and their algebraic representatives are the idempotent 

totally symmetric quasigroups. Steiner quadruple systems ( )SQS
 
are systems 

(3,4, ),S v
 

represented by the idempotent totally symmetric ternary 

quasigroups.  

For  ( , )SQS Q B
 

and ,a Q
 

by taking the set { }Q a\  and the blocks 

{{ , , }|{ , , , } },x y z x y z a B
 
a derived triple system is obtained. An SQS  is called 

homogenous if all of its derived triple systems are isomorphic.  

In this paper sufficient conditions for SQS  to be homogenous are given, 

resulting with an algebraic representation of one class of homogenous 

quadruple systems.  

 

 

 

1. INTRODUCTION  

 

A Steiner system  , ,S t k v  is a pair  , ,Q B
 
where Q

 
 is a v -element set 

and B  is a collection of its k -element subsets (called blocks) with the property 

that every t -element subset of Q  is contained in a unique block of B . Systems 

(2,3, )S v  and (3,4, )S v  are called Steiner triple system  STS
 
and Steiner  

quadruple system  SQS
 
respectively.  
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There is a natural connection between  SQS v
  

and  1 .STS v    Let 

 ,Q B  be an  SQS v
 
and choose an arbitrary element .a Q   Let aB  be the 

collection of the  -element subsets of   Q a\   which is obtained by selecting 

all of the blocks of B  containing the element ,a and then excluding this element 

from them. Then the pair     , aQ a B\
  

is an  1 .STS v   Such a Steiner triple 

system is called a derived triple system ( )DTS
 
of the quadruple system  , .Q B  

The problem whether or not every STS  is a DTS   of some quadruple system is 

open. 

Woolhouse in 1844 [12] posed the question: for which integers t , ,k  and ,v

does an  , ,S t k v
 
exist? Up to the present time, this problem is also unsolved in 

general. However, several partial answers are given. Three years later, Kirkman 

[7] showed that ( )STS v
 

 exists if and only if  1 or 3 (mod6),v   and 

constructed systems (3,4, ,2 )nS
 
for every .n  During the late      and early 

     century very much was written on the subject of ,STS  and very little on

.SQS
 
Hanani [4] proved that the necessary condition 2 or 4 (mod6)v 

 
for the 

existence of an SQS
 
of order v is also sufficient, by induction and using six 

recursive constructions. However, the most extensive study of Steiner systems 

probably was done in the 70s and the 80s of the last century, concerning the 

various constructions of a single system and classes of certain type, 

isomorphism problems, groups of automorphisms, classifications and 

enumerations, embedings and partial systems, as well as their applications. The 

development of the computers played significant role, especially in the past 

thirty years. 

Steiner triple and quadruple systems possess “algebraic twins”. Given an 

( )STS v
  , ,Q B

 
one can define a binary operation   on Q  by a b c    

whenever  , , ,a b c B
 

and .a a a   As there is a unique triple in B  

containing two distinct elements, this operation is well defined. The groupoid 

 ,Q   belongs to the variety determined by the identities: 

  .

x x x

x y y x

x x y y

 

  

  

 

Its members are idempotent totally symmetric quasigroups, also known as 

Steiner quasigroups, since there is a two-way relationship between such 
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quasigroups and Steiner triple systems. Namely, if  ,Q 
 
 is a v -element 

Steiner quasigroup, then the sets { , , },  , ,  ,a b a b a b Q a b  
 
are precisely the 

blocks of an ( )STS v . 

A similar correspondence exists between Steiner quadruple systems and 

idempotent totally symmetric ternary quasigroups (Steiner 3-quasigroups). They 

are defined by the following identities: 

 

     

  

, ,

, , , , , ,

, , , , .

f x x y y

f x y z f x z y f y x z

f x y f x y z z



 



 

If  ,Q B  is an ,SQS
 
then the ternary operation f

 
on Q

 
defined by the rules

       , , , , , ,f a a b f a b a f b a a b    and  , ,f a b c d  if and only if 

 , , ,a b c d B   is well defined and satisfies the above identities. On the other 

hand, if  ,Q f  is a finite Steiner 3-quasigroup, then  ,Q B  is an ,SQS
  

for B  

consisting of the sets   , , , , , ,a b c f a b c
 
where ,  and a b c  are distinct elements 

of Q
 
 (see [1]). For the quadruple system  ,Q B  corresponding to the Steiner 

3-quasigroup  , ,Q f  we will say that it is induced by  , .Q f  Note that for 

,a Q
 

the    , aDTS Q a B\  of  ,Q B  has an algebraic equivalent 

  ,Q a \  whose operation can be defined by the ternary operation ,f

according to the rules  

 , , ,   

,                 .

f x y a x y
x y

x x y

 
  


 

We also say that the triple system   , aQ a B\
 
 is induced by   ,Q a \ . 

An isomorphism from a Steiner system  1 1,Q B  
 
with parameters , ,t k v   

onto a Steiner system  2 2,Q B  of the same type is a bijection 1 2:Q Q   

which maps the k -tuples of 1Q  onto k -tuples of 2.Q
 
An automorphism of 

 ,Q B
 
is an isomorphism of  ,Q B  onto itself. If    is an isomorphism from a 

Steiner quasigroup 1( , )Q   onto a Steiner quasigroup 2( , ),Q   then   is also an 

isomorphism from the corresponding 1 1  ( , )STS Q B  of 1( , )Q   onto the 

corresponding 2 2  ( , )STS Q B  of 2( , ).Q   Namely, if   1, ,a b c B
 

then 

       ,c a b a b      
 
meaning that        2, ,a b c B    . The same 
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property also holds for .SQS  We use it to obtain an algebraic characterization 

of one class of homogenous Steiner quadruple systems. 

The stated relations between Steiner systems and Steiner quasigroups are of 

great importance for both combinatorial and algebraic structures. Some 

properties are easier to be proved algebraicly,  and others combinatorially. If we 

prove one in either way, then the corresponding property can be applied to the 

other structure. In our paper we use algebraic tools to obtain the desired 

combinatorial property. 

 

2. DESCRIPTION OF A CLASS OF HOMOGENOUS SQS 

 

Given an ,SQS
 

let 
 

denote the number of pairwise non-isomorphic 

derived triple systems. Obviously, 1 ,v 
 
 for any ( ).SQS v

 
 The least v  for 

which 1 
 
 is 14. There are  4  non-isomorphic (14),SQS

 
 and for two of 

them 1,   while for the other  two 2   (see [8]). It is clear that these are the 

only two possible values for   since there are exactly two non-isomorphic   

(13).STS  

Although infinite classes of SQS  with 2   were constructed, as well as 

( )SQS v
 
with t   for any positive integer t  ( v  much greater than t ), the 

question of determination of   for any given SQS  is very far from solved. 

Moreover, no one as yet has found an order v  such that for every ,k  1 ,k v   

there is an ( )SQS v
  
having .k   

An SQS
 
is said to be homogenous if its value of 

  
is one, or equivalently 

if all of its derived triple systems are isomorphic. If all the DTS   of an ( )SQS v
 

are pairwise non-isomorphic ( ),v 
 

 then the quadruple system is called 

heterogenous. 

In what follows, we give an algebraic description of one class of 

homogenous Steiner quadruple systems. 

 

Lemma. Let  ,Q f
 

be a finite Steiner 3-quasigroup and   be an 

automorphism of  Q . Then  for ,a Q  the derived triple systems   , aQ a B\  

and      , aQ a B\
 
 of the quadruple system induced by  ,Q f

  
are 

isomorphic. 
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Proof. Let  ,Q B  be the SQS  induced by  ,Q f
 

and define

    :Q a Q a \ \  by    .u u 
 
Let   ,Q a\  and    ,*Q a\  

be the Steiner quasigroups which induce the triple systems   , aQ a B\  and 

     , aQ a B\  respectively. It is clear that   is a bijection, since 
 
is a 

bijection. If  , ,u v Q a \  and ,u v  then  

       

      

       

, , , ,

, ,

* * .

u v f u v a f u v a

f u v a

u v u v

  

  

   

 



   

The equality        *u u u u u      completes the proof.

  

Corrolary 1.  Le t  ,Q f
 
be a finite Steiner 3-quasigroup with the property 

that for every , ,a b Q
 
 there is an automorphism    such that   .a b 

 
Then  

the quadruple system induced by  ,Q f  is homogenous. 

 

Note that the converse is false, and  the smallest example of this is obtained 

for order 16v   (see [8]). 

 

Theorem. Let  ,Q f  be a finite Steiner 3-quasigroup. Then the mapping 

   , ,x f s t x 
 
is an automorphism of Q

 
 for each , ,s t Q  if and only if

         , , , , , , , , , , , ,f a b f u v w f f a b u f a b v f a b w
 
is an identity of .Q

 

Proof. For every , , , ,a b x y z Q
 
 and the automorphism    , , ,x f a b x 

 
we 

have  

             

     

, , , , , , , , , ,

, , , , , , .

f f a b x f a b y f a b z f x y z

f x y z f a b f x y z

  





 
 

Conversely, let          , , , , , , , , , , , ,f a b f u v w f f a b u f a b v f a b w  be an 

identity of ,Q
 
and ,s t

 
be arbitrary elements of .Q  First we prove that the 

mapping :Q Q    defined by    , ,x f s t x 
 
 is a bijection. 

Since f
 
is a quasigroup operation,  

       , , , , ,x y f s t x f s t y x y       
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which means that    is injective. 

Let v Q  and  , , .u f s t v  Then  

      , , , , , , ,u f s t u f s t f s t v v     

by the fact that  ,Q f  is a Steiner 3-quasigroup. Hence,   is surjective. 

The mapping 
 
is a homomorphism, as a direct consequence of the identity. 

Namely, for , , ,x y z Q   we have  

            

      

, , , , , , , , , , , , , ,

, , .

f x y z f s t f x y z f f s t x f s t y f s t z

f x y z



  

 


 

 

Corrolary2. Let V be the variety of algebras with one ternary operation, 

defined by the identities 

 

     

  

         

, ,

, , , , , ,

, , , ,

, , , , , , , , , , , , .

f x x y y

f x y z f x z y f y x z

f x y f x y z z

f a b f x y z f f a b x f a b y f a b z



 





 

Then every finite algebra of  V induces a homogenous .SQS  

Proof. The first three of the defining identities of V  determine the variety of 

Steiner 3-quasigroups, hence V  is its subvariety.  

Let  ,Q f be a finite algebra of  V  and  ,Q B  be its induced quadruple 

system. We prove that for arbitrary elements , ,a b Q
 
the derived systems 

  , aQ a B\
 
and   , bQ a B\  of the quadruple system  ,Q B

 
are isomorphic. 

Let    :Q Q   be the mapping defined by     , , .x f a b x   Then   is an 

automorphism of Q
 
by the preceding theorem. By the defining identities of ,V

we obtain    , , .a f a b a b     Then by using the result of the Lemma, we get 

that the derived systems   , aQ a B\
 
and   , bQ a B\  are isomorphic. 

 

3. EXAMPLES 

 

The algebraic representative of the unique (8)SQS  satisfies the identity 

         , , , , , , , , , , , ,f a b f x y z f f a b x f a b y f a b z   (1) 

implying that the 
 

(8)SQS
 
 is homogenous. 



Algebraic Representation of a ... 57 

 

   

1 2 4 8 3 5 6 7

2 3 5 8 1 4 6 7

3 4 6 8 1 2 5 7

4 5 7 8 1 2 3 6

1 5 6 8 2 3 4 7

2 6 7 8 1 3 4 5

1 3 7 8 2 4 5 6

 

Figure 1: The unique 
 

(8)SQS  

It is not necessary to check all the 58 quintuples to get this result. Namely, this 

SQS  is a member of the class of Steiner quadruple systems of orders 2n  

(constructed by Kirkman) whose corresponding Steiner 3-quasigroups satisfy the 

identity 

     , , , , , , , ,f x y f z y t f f x y z y t      (2) 

The subvariety of the variety of Steiner 3-quasigroups which is determined by 

the above identity  is  its  unique  minimal subvariety,  i.e. it is the unique atom 

in the lattice of all subvarieties of the variety of Steiner 3-quasigroups (see [10]). 

Its algebras can easily be obtained from the class of Boolean groups. Given a 

Boolean group  ,S  , one needs only to define a ternary operation f  on S   by  

 , ,f a b c a b c   . 

The main question which arises from this discussion is whether this minimal 

subvariety is a proper subvariety of the variety V  of  Corrolary 2, or the 

identities (1) and (2) are equivalent in the variety of Steiner 3-quasigroups. 

 The second “smallest” SQS  is of order 10, and it is also unique (up to an 

isomorhism).  

1 2 4 5   1 2 3 7   1 3 5 8

2 3 5 6   2 3 4 8   2 4 6 9

3 4 6 7   3 4 5 9   3 5 7 0

4 5 7 8   4 5 6 0   1 4 6 8

5 6 8 9   1 5 6 7   2 5 7 9

6 7 9 0   2 6 7 8   3 6 8 0

1 7 8 0   3 7 8 9   1 4 7 9

1 2 8 9   4 8 9 0   2 5 8 0

2 3 9 0   1 5 9 0   1 3 6 9

1 3 4 0   1 2 6 0   2 4 7 0

 

Figure 2: The unique (10)SQS  
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It is cyclic, which means that it has an automorphism consisting of a single cycle 

of length 10. Such an SQS  belongs to a class of the so called transitive ,SQS
 

i.e. SQS
 
whose automorphism group acts transitively on the elements. This 

class of SQS  is precisely the class described in Corrolary 1. According to the 

Lemma, the (10)SQS
 
is an example of a homogenous .SQS  However, (1)  is not 

an identity of its corresponding Steiner 3-quasigroup:  

    1,2, 4,7,9 1,2,1 2,f f f   

but  

        1,2,4 , 1,2,7 , 1,2,9 5,3,8 1.f f f f f   

This shows that the identity (1) provides sufficient, but not necessary condition 

for the induced SQS  of a Steiner 3-quasigroup to be homogenous. 

 

4. CONCLUSIONS 

 

Steiner systems and other combinatorial designs have attracted 

mathematicians with their uniform distribution of elements into sets for a 

long time. Since the first results, a huge progress in combinatorics is made, 

but yet, there are so many unanswered questions and open problems. 

 The algebraic approach in studying Steiner systems contributed a lot in their 

understanding in the past 40 years, and the related algebraic structures have 

become a non-separating part of the combinatorial research. 

The summation of the efforts in resolving the problem of classification of 

Steiner quadruple systems according to the number of their pairwise non-

isomorphic derived triple systems is a collection of particular results which are 

partial and unsystematic. The research of SQS
 
with a minimal, and SQS  with a 

maximal possible number of classes of isomorphic ,DTS   i.e. homogenous and 

heterogenous SQS  is not completed, as well. It was conjectured that both types 

of SQS  exist, for every order  16.v   

The result of this paper brings a small contribution to the research of 

homogenous ,SQS  providing a nice description of a specific class of such 

.SQS  
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ASYMMETRIC INNER PRODUCT AND THE ASYMMETRIC  

QUASI NORM FUNCTION 

 

Stela Çeno
1
, Gladiola Tigno

2
 

 

Abstract. This paper attempts to generalize the semi scalar product concept 

according to G. Lumer by replacing Cauchy inequality with another inequality 

which is more generalized. Based on this attempt of generalization it is built a 

function which fulfils the conditions which are changed. In this paper it is also 

generalized quasi norm function by replacing homogeneity condition with a 

more restricted condition by producing this time a more generalized 

asymmetric semi norm function. As a result, in this paper it is defined the 

asymmetric inner product function and the asymmetric quasi norm function. 

Moreover, it is even given relation between these two.  

  

 

1. INTRODUCTION  

 

Semi-inner products, that can be naturally defined in general Banach spaces 

over the real or complex number field, play an important role in describing the 

geometric properties of these spaces. 

Starting from its axiomatic, many researchers have made various 

modifications passing in its generalization. Semi-scalar products mark the very 

first generalizations of the scalar product function. The strong bond between 

these functions with the norm function has made it possible to obtain a lot of 

interesting results which are connected with the orthogonality and convexity 

[1],[2]. 

In [3],[4] it is also generalized the quasi norm function by replacing 

homogeneity condition with a more restricted condition by producing this time a 

more generalized asymmetric semi norm function. 

Let be 0 :p   a function defined by:  

0

| |, 0

 2 | |
( )

, 0

x x

x
x

x
p






 


. 

_______________________________________ 
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Definition 1. The 0 :p   function is called an asymmetric semi norm if: 

a) 0( ) 0p x   for x  . 

b) 0 0( ) ( )p x p x  for 0, x     

c) 0 0 0( ) ( ) ( )p x y p x p y   ,x y  . 

For every 2
1 2( , )x x x  , we define the function 0 1 0 2( ) ( ) ( )p x p x p x  , 

where 0 1 0 2( ), ( )p x p x  are asymmetric semi norms in .  

 

Proposition 1. The function :p    such that 0 1 0 2( ) ( ) ( )p x p x p x   it 

is also an asymmetric semi norm in 2 . 

Proof. a) We have  

0 1 0 2( ) ( ) ( ) 0p x p x p x   , 2
1 2( , )x x   and  

0 1 0 2 1 2( ) 0 ( ) 0 ( ) 0 0p x p x p x x x         

b) We have  

0 1 0 2 0 1 0 2

0 1 0 2

( ) ( ) ( ) ( ) ( )

[ ( ) ( )] ( ), for  0.

p x p x p x p x p x

p x p x p x

    

  

   

   
 

c) We have  

0 1 1 0 2 2

0 1 0 1 0 2 0 2

0 1 0 2 0 1 0 2

( ) ( ) ( )

( ) ( ) ( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( ).

p x y p x y p x y

p x p y p x p y

p x p x p y p y

p x p y

    

   

   

 

 

So ( ) ( ) ( )p x y p x p y   ,
 

2,x y  .  

 

For every two points 1 2( , )x x x  and 1 2( , )y y y  in 2  we build the function 

( , ) :     such that: 

1 1 2 2

0 1 0 2

1 1

0 1

2 2

0 2

1 2( ) ( )

1 2( )

1 2( )

1 2

( )[ ], for 0 and 0,

( ) , for 0 and 0,
( , )

( ) , for 0 and 0,

0, for 0 and 0.

x y x y

p y p y

x y

p y

x y

p y

p y y y

p y y y
x y

p y y y

y y

   



 
 


 


 

. 

The function defined above have the following properties: 

1) 2
1 2( , ) 0, ( , )x x x x   . 

2) For 0   

1 1 2 2 1 1 2 2

0 1 0 2 0 1 0 2

( ) ( ) )2
( ) ( ) ( ) ( )

( , ) ( )[ ] ( )[ ]
x y x y x y x y

p y p y p y p y
x y p y p y
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1 1 2 2

0 1 0 2

)

( ) ( )
( )[ ].

x y x y

p y p y
p y 

 
1 1 2 2 1 1 2 2

0 1 0 2 0 1 0 2

( ) ( )

( ) ( ) ( ) ( )
( , ) ( )[ ] ( )[ ] ( , ), .

x y x y x y x y

p y p y p y p y
x y p y p y x y

 
          

3) ( ', ) ( , ) ( ', )x x y x y x y    

Case 1. ' '
1 2 1 2( , ), ' ( , )x x x x x x   and 1 2( , )y y y  where 1 20, 0,x x   

'
1 0,x  '

2 0x  :  

' '
1 1 1 2 2 2

0 1 0 2

' '
1 1 1 1 2 2 2 2

0 1 0 1 0 2 0 2

' '
1 1 2 2 1 1 2 2

0 1 0 2 0 1 0 2

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ', ) ( )[ ]

( )[ ]

( )[ ] ( )[ ]

( , ) ( ', ).

x x y x x y

p y p y

x y x y x y x y

p y p y p y p y

x y x y x y x y

p y p y p y p y

x x y p y

p y

p y p y

x y x y

 
  

   

   

 

 

Case 2. '
1 2 1( , ), ' ( ,0)x x x x x   and 1 2( , )y y y  where 1 20, 0,x x   

'
1 0x  :  

1 1 2 2

0 1 0 2( ) ( )
( , ) ( )[ ]

x y x y

p y p y
x y p y    and  

'
1 1

0 1( )
( ', ) ( )

x y

p y
x y p y  

In this case '
1 1 2' ( , )x x x x x    therefore: 

'
1 1 1 2 2

0 1 0 2

'
1 1 2 2 1 1

0 1 0 2 0 1

( )

( ) ( )

( ) ( ) ( )

( ', ) ( )[ ]

( )[ ] ( )

( , ) ( ', ).

x x y x y

p y p y

x y x y x y

p y p y p y

x x y p y

p y p y

x y x y


  

  

 

 

The reconciliation ( ', ) ( , ) ( ', )x x y x y x y    goes equally in these cases:

 a) '
1 2 2( , ), ' (0, )x x x x x   and 1 2( , )y y y  where '

1 2 20, 0, 0x x x    

b) ' '
1 1 2( ,0), ' ( , )x x x x x   and 1 2( , )y y y  where ' '

1 1 20, 0, 0x x x    

c) ' '
2 1 2(0, ), ' ( , )x x x x x   and 1 2( , )y y y  where ' '

2 1 20, 0, 0x x x    

Case 3: 1 2 1 2( , ), ' ( ' , ' )x x x x x x   and 1 2( , )y y y  where 1 20, 0,x x   

' '
1 20, 0x x   but '

1 1 0x x   and '
2 2 0x x   so '

1 1x x   and '
2 2x x  .

 
In this case ' (0,0)x x   therefore ( ', ) 0x x y   while: 

' '
1 1 2 2 1 1 2 2

0 1 0 2 0 1 0 2

1 1 2 2

0 1 0 2

( ) ( ) ( ) ( )

( ) ( )

( ', ) ( )[ ( )[ ]

( )[ ] ( , )

x y x y x y x y

p y p y p y p y

x y x y

p y p y

x y p y p y

p y x y

 
   

    

 

from where: ( , ) ( ', ) 0 ( ', )x y x y x x y    . 



64  Stela Çeno
1
, Gladiola Tigno 

 

Case 4: ' '
1 2 1 2( , ), ' ( , )x x x x x x   and 1 2( , )y y y  where 1 20, 0,x x   

'
1 0,x   '

2 0x   but '
1 1 0x x   so '

1 1x x  . 

In this case '
2 2' (0, )x x x x    therefore: 

' '
2 2 2 2 2 2 2

0 2 0 2 0 2

( )

( ) ( ) ( )
( ', ) ( ) ( ) ( )

x x y x y x y

p y p y p y
x x y p y p y p y


     

while: 

1 1 2 2

0 1 0 2( ) ( )
( , ) ( )[ ]

x y x y

p y p y
x y p y   

and   
' ' '
1 1 2 2 1 1 2 2

0 1 0 2 0 1 0 2( ) ( ) ( ) ( )
( ', ) ( )[ ] ( )[ ]

x y x y x y x y

p y p y p y p y
x y p y p y


     

Since, from 
'

2 2 2 2

0 2 0 2( ) ( )
( , ) ( ', ) ( ) ( ) ( ', )

x y x y

p y p y
x y x y p y p y x x y     .  

It is equally demonstrated when: ' '
1 2 1 2( , ), ' ( , )x x x x x x   and 

 1 2( , )y y y  

where ' '
1 2 1 20, 0, 0, 0x x x x     but '

2 2 0x x   so '
2 2x x  . 

4) From the definition of the function  

0

| |, 0
( )

2 | |, 0

x x
p x

x x


 


 

we obtain the inequality: 0| | ( )x p x ,
2x  , from where:  

1 0 1 2 0 2 1 0 1 2 0 2| | ( ) | | ( ),| | ( ) | | ( )x p x x p x y p y y p y       

brings:  

 

1 2

0 1 0 2

| | | |
1 2( ) ( )

1 2 0 1 0 2

| ( , ) | ( )[| | | | ]

( )[| | | |] ( ) ( ) ( )

( ) ( ) ( ) ( ).

y y

p y p y
x y p y x x

p y x x p y p x p x

p y p x p x p y

 

   

 

 

So | ( , ) | ( ) ( )x y p x p y , from where 2( , ) | ( , ) | ( )x x x x p x  . 

 

Remark.  For ( , )x x  where 2
1 2( , )x x x   we have: 

1) 1 2 1 20, 0 ( ) 0, ( ) 0x x p x p x       

 

2 2 2 2
1 2 1 2

0 1 0 2 0 1 0 2

| | | |

( ) ( ) ( ) ( )

2
0 1 0 2

( , ) ( )[ ] ( )[ ]

( ) ( ) ( ) ( ).

x x x x

p x p x p x p x
x x p x p x

p x p x p x p x

   

  
 

2) 1 2 1 20, 0 ( ) 0, ( ) 0x x p x p x       

2
1

0 1

2 2 2
1 0( )

( , ) ( ) | | ( ) ( )
x

p x
x x p x x p x p x     

3) 1 2 1 20, 0 ( ) 0, ( ) 0x x p x p x      
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2
2

0 2

2 2 2
2 0( )

( , ) ( ) | | ( ) ( )
x

p x
x x p x x p x p x     

4) 1 2 1 20, 0 ( ) ( ) 0 ( ) 0x x p x p x p x          2, 0 ( )x x p x    

Finally: 2| ( , ) | ( )x x p x .  

 

Remark.  Frankly, 2( , ) ( )x x p x every time is not true. Because for ( 1,2)x    

we have 2( ) | 1| 2 | 2 | 5 ( ) 25p x p x       and other side: 

2 2 2 2
1 2

0 1 0 2

( 1) 2
( ) ( ) | 1| 2|2|

( , ) ( )[ ] 5[ ] 5[1 1] 10
x x

p x p x
x x p x




       . 

In this case 2( , ) ( )x x p x . 

 

Record 1. Also we can prove that 2( ) 2( , )p x x x . 

Proof. Case 1: For 2
1 2( , )x x x   where 1 20 0x x    we have: 

2 2 2 2
1 2 1 2

0 1 0 2 1 2

| | | |
1 2( ) ( ) | | | |

( , ) ( )[ ] ( )[ ] ( )[| | | |] ( ) ( )
x x x x

p x p x x x
x x p x p x p x x x p x p x      

 
or 2( ) ( , ) 2( , )p x x x x x   

Case 2: For 2
1 2( , )x x x   where 1 20 0x x   we have: 

2 2 2 2 2
1 2 1 2 1 2

0 1 0 2 1 2

| | | | | | | | ( )

( ) ( ) 2| | 2| | 2 2 2
( , ) ( )[ ] ( )[ ] ( )[ ] .

x x x x x x p x

p x p x x x
x x p x p x p x      

 
So 2( ) 2( , )p x x x . 

Case 3: For 2
1 2( , )x x x   and 1 20 0x x   1 2[ 0 0]x x    we have: 

2 2 2 2
1 2 1 2

0 1 0 2 1 2

2
1 1 2

| | | |

( ) ( ) 2| | | |

| | | | | | ( )
22 2 2 2

( , ) ( )[ ] ( )[ ]

( )[ | |] ( )[ ] .

x x x x

p x p x x x

x x x p x

x x p x p x

p x x p x

   

      

So 2( ) 2( , )p x x x . 

 

Record 2. The function ( , )x y  defined as above provides the benefit of the 

function :p    such that: ( ) ( , )p x x x . 

From the inequality: 2( ) 2( , )p x x x we have  

22( ) 2 ( )p x p x  or ( ) 2 ( )p x p x , 

and from the inequality  ( , ) ( ) ( )x y p x p y  we have: 

( , ) ( ) ( ) 2 ( ) 2 ( ) 2 ( ) ( )x y p x p y p x p y p x p y   . 

So for the function :p    these properties hold: 
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1) ( ) 0, ( ) 0 0p x p x x     for 
2x  

2) ( ) ( )p x p x  ,  for 0  , 
2x  

3) for 2,x y :  

2
( ) | ( , ) | | ( , ) | | ( , ) |

2 ( ) ( ) 2 ( ) ( )

2 ( )[ ( ) ( )]

p x y x y x y x x y y x y

p x p x y p y p x y

p x y p x p y

       

   

  

 

So ( ) 2[ ( ) ( )]p x y p x p y   , for 2,x y . 

 

2. MAIN RESULTS 

 

Definition 2. The function  , : X X     , where X is a vectorial space, it is 

called the asymmetric quasi inner product if: 

a) ( , ) 0x x  , x X   

b) ( , ) ( , )x y x y  , 2( , )x y X   and    

( , ) ( , )x y x y  , 2( , )x y X  and 0   

c) ( ', ) ( , ) ( ' )x x y x y x y    , , ',x x y X   

d) 
2

( , ) ( , )( , )x y k x x y y ,  for 1k  . 

 

Definition 3. The function :p X   it is called the asymmetric quasi norm 

function if: 

a) ( ) 0p x  , x X   

b) ( ) ( )p x p x  , x X   and 0   

c)  ( ) ( ) ( )p x y k p x p y   , 2( , )x y X   and 1k  . 

 

Proposition 2. If ( , )x y  is the asymmetric quasi inner product function on X , 

then the function :p X  such that ( ) ( , )p x x x  is an asymmetric quasi 

norm function. 

Proof. 1) We have  

( ) ( , ) 0p x x x  , x X   

2) We have  

2( ) ( , ) ( , )p x x x x x     , for 0  . 

Therefore  

( ) ( , ) ( )p x x x p x    . 
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3) We have  
2

( ) ( , )

( , ) ( , )

( , ) ( , )

'( , )( , ) '( , )( , )

' ( ) ( ) ' ( ) ( )

' ( ) ( ) ( ).

p x y x y x y

x x y y x y

x x y y x y

k x x x y x y k y y x y x y

k p x p x y k p y p x y

k p x p y p x y

   

   

   

     

   

   
 

 

From where: ( ) ' ( ) ( )p x y k p x p y   
 

 and if we denote ' 1k k   we 

have:  

( ) [ ( ) ( )]p x y k p x p y   . 

 

3. CONCLUSIONS  

 

An asymmetric quasi norm function can be obtained by an asymmetric inner 

product function, and the link between them is the function: :p X  , so that 

( ) ( , )p x x x
.
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