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ABOUT THE TYPES OF HOMOGENOUS LINEAR
DIFFERENTIAL EQUATIONS OF SECOND ORDER AND
THEIR SOLUTIONS

Lazo Dimov

Abstract In the paper, types of linear differential equations of second order are
defined in the sense of the known classification of the types of linear partial
differential equations of second order. Then the shapes of their solutions are
examined and some classes differential equations are solved.

1. PART1

For the linear partial differential equations of second order

0%z foird foird oz oz _
A¥+288X—6y+0¥+ D&-‘r EWJF Fz+G=0,

where A, B,C,D,E,Fand G are real functions from the two variables x and
y , depending on the value of the determinant
A B
A= ,
B C‘

we have the following classification:
1. If A<O,itisaPDE of hyperbolic type.
2. If A=0, itis a PDE of parabolic type.
3. 1f A>0,itis aPDE of elliptic type.

Here, we will make a similar classification for the homogenous linear
differential equations of second order. It is well known that the equation

y'+Ay=0 (1)

2010 Mathematics Subject Classification. 34A05, 34A30.
Key words and phrases. classification, elliptic type, parabolic type, hyperbolic type, differential
equation with constant coefficients.



6 Lazo Dimov

where A=const (equation 2.9 on page 365 in [2]), has a solution which can be
written with the formula

y(X)=¢ sin \/Kx +C, cos\/Kx, for A>0

y(X)=¢gx+c,, for A=0 (2)

y(x)=olsh\/—_Ax+c2ch\/—_Ax, for A<O.

By analogy with the classification of the linear PDE of second order that we
made, we can make the following classification for the equation (1) and its
solution (2):

1. If A<O,itisan equation of hyperbolic type.

2. 1f A=0, itis an equation of parabolic type.

3. If A>0, itisan equation of elliptic type.

If A=a(x) is a given function, then we can make the following
classification of the equation (1), which now has the form

y"+a(x)y=0 ©)
and its solution as well, i.e.:

1. An equation of hyperbolic type, if a(x)<O0.

2. An equation of parabolic type, if a(x)=0.

3. An equation of elliptic type, if a(x)>0.

For the solution of the equation (3) for every type, we examine the following
formulas:

Y(X) =c1Sing(x) X +C5 COSy(x) X, for a(x) >0

y(X)=c;x+cy, for a(x)=0 (4)
Y(X) =¢;Sha(xy X+CpChay X, for a(x)<0.
Here, the functions sing(y) X, C0Sg(y) X, Sha(x) X, Chaxy X are defined and

determined in [3].
It is well known that if in the differential equation

y'+ 0y +9(x)y=0 (5)
we introduce a new function given with
1
yo=e 2 0%y ©)
it will transform in the differential equation
"+a(x)z=0 (7

known as canonical equation, where
a()=g(0) -3 ' (-1 %(x). (8)
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Now, according to the previous classification we made, we get the following
classification for the equation (5):
1. The equation (5) is of hyperbolic type, if a(x) <0.
2. The equation (5) is of parabolic type, if a(x)=0.
3. The equation (5) is of elliptic type, if a(x)>0.
Here, the solution of the equation (5), we get with the formulas:
e—%ff(x)dx

y(x)= [c18ing(x) X+CoC0s5(x) X], for a(x) >0
1

y(x)=e 2If(X)dx[clx+c2], for a(x)=0 9)
—1[ f (x)dx

y(x)=e 2 [C18ha(x) X +Cacha X], for a(x) <0.

Example. The differential equation
Yy +2(x+K)y' + (X% + 2kx + 2k =K +1)y =0
where
f(X)=2(x+Kk), g(x)=x2+2kx+2k?—k+1,
and k =const has a canonical equation
2" +(k? —K)z =0,
s0, according to the formulas (2) has a solution

z(x) =c¢;sin x}kz —kx+c, cosxik2 —kx, if k e(—OO,O)U(l,OO)

z(x):clx+cz, if k=0and k=1
2(x) = o VKK 4 e VK KX i e (0,).
Now, the given equation according to the formulas (9) has a solution:
2

vy =e 2 e sin k2 —kx+cpcosvkZ —kx], if k &(—00,0) U (L)

y(x)=¢ 2[c_qu+c2] if k=0
2

y(x):e_x7+x[olx+cz], if k=1

X2
y(x) = 2 X[ Vkkx o gVkkxy g ke(0,2).
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2. PART?2

If we introduce a new independent variable in the equation (5) with the
relation x=x(t), in order to get the equation (5) shaped as (1), we get that the

functions that appear in the equation, satisfy the condition

9'(x)+2f(x)g9(x)=0 (10)
and we get the new variable from the relation
()2 = _A_
XM =500" (11)

From (11) we have the following:
1. for g(x) >0 we have A>0, so the equation becomes an equation from

elliptic type, where the connection between the new and the old variable is
JAt =[J9(x) dx.

2. for g(x)<0 we have A<O0, so the equation becomes an equation from
hyperbolic type, where the connection between the new and the old variable is
ﬁt:j —g(x) dx.

3. if g(x) =0, we can say that the equation is from parabolic type. Actually,
the equation is

y'+f(x)y'=0
and its solution is given with the formula
y(X) = clje_j T gy + .

Now, for the general solution of this kind of equation according to the formula
(2), we get the following formula:

y(x):ole_j _g(x)dx+czej _g(x)dx, for g(x)>0
y() :Gl‘[e—j'f(x)dx

y(x)=clsin(j g(x)dx)+czcos(j g(x)dx), for g(x)<0.

dx+c,, for g(x)=0 (12)

Example. In the differential equation
y'+Ly +¥y=0,
where the functions f(x)=2—1X and g(x)=§ satisfy the condition (10). So,

according to the formulas (12), its solution is
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y(x) = ole_zJ__kX + Czez*/__kX for kx>0

y(x) =c;\/x+¢c,, for k=0 (12°)
y(x) = ¢ sin(2v/kx) + ¢, cos(24/kx), for kx<O0.

3. PART3

Here we will explore the differential equation of second order with positive
constant coefficients
y'(t) +2ay'(t) +b*y(t) =0, (13)
(in [5] it is explored with dimensional constants). The characteristic equation of
the equation (13) is
r? +2ar +b% =0.

Its solutions are fp=—at NEG

It is useful to write them in the following shape

o =22 @7 Db— (k=D K

Now, depending on the value of |, we make the following classification of
the equation (13):

1. for 1 <0 i.e. k<1, the equation is an equation from elliptic type,

2.for I =0 i.e. k=1, the equation is an equation from parabolic type,

3.for 1 >0 i.e. k>1, the equation is an equation from hyperbolic type.
Its solution is given with the formulas:

y(x) =e X (¢, cos /bt + ¢, sinyIbt), for 1<0,ie. k<1
y(x)=e " (c, +cot), for 1=0,ie k=1 (14)

y(X) =olebtm +c2ebt”, for 1 >0, i.e.k >1, where m=—k —1,n=—k + /1.
Now, if in the differential equation (5) we introduce new independent
variable with the relation x =x(t), in order to get the equation (5) shaped as the

differential equation (13), we get that the following conditions have to be
satisfied

a |_12_
B’I_k 1.

f(X)X'() —% ~2a (15)
g()X'(1)? =b?. (16)

Eliminating t from (15) and (16) we get
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2900 F()+9'(¥) _a _ 17
49(0\Jo) b an
Now, if we find the derivative of (17) we get the functional connection:
21 ()9()9'(x) ~49° () /() - 29(x)g"(x) +3g'(x)* =0 (18)
which in fact is the condition that has to satisfy the functions f(x) and g(x) in

order the equation (5) to be able to transform into (13).
From (16) we come to the connection between the old and the new
independent variable:

bt = [/g(x)dx. (19)
So, we have proven the following theorem:

Theorem. The differential equation (5) can be transformed into a differential
equation of type (13) if the functions f(x) and g(x) satisfy the condition (18)

and the new independent variable is given with the relation (19). Here, we get
the general solution according to the formulas (14) in which we substitute

bt with (19) and the ratio %: k is given with the formula (17).

For the general solution we have the formulas:
y = e KIVak)ax (qcosledx+czsinlj g(x)dx), for 0<k <1, 1 =\1—k2.
y=e INO0Id (e ¢y [Ja(x)dx), for k =1,
y= olemI 9(x)ax +c2enj 909X tor Kk 1. where m = —k —/—T,n = —k -+ 1.
Example 1. In the differential equation
y'+(CNx =)y +xy =0,
the functions f(x)= c\/_—% and g(x)=x satisfy the condition (18), for k

from (17) we get k :% . S0, according to the formula for the substitute, we have

Nw

[Ja(x)dx = [/xdx =£x2.

Depending on the value of ¢ we have the following forms for the solution of
the differential equation

3
_Cy2 3 . 3
y=e 3 (olcos%xM—czxZ +czsm%\/4—czx2), for O<c<2.
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3 2 %
y=(cl+c2x5)e_§X , for c=2,

c+\/ 2—4 X% c+\/c2—4 X%

+coe 3 , for c>2.

(3}

y=Ge

w

Example 2. The Euler differential equation
x2y" +cxy’+y =0,
written in shape (5) is
" ' 1
y'+3y +?y=0.
The functions f(x)=§ and g(x)zi2 satisfy the condition (18) and for k
X
from (17) we get k ZCT_l' So, according to the formula for the substitute, we
have
—(Lldy =
[Ja()dx=[ ~dx=Inx.
Depending on the value of ¢ we have the following forms for the solution of
the differential equation

el
y=e 3 (olcos%\/3+2c—c2 Inx+czsin%\i3+2c—c2 Inx), for 1<c<3,

_ 1 _
y—(ol+c2Inx);, for c=3,

1ce?-2c-3 1crc?—2c-3

y=ce 2 +Cye 2 , for ¢>3.

Note. In [2] on page 383, ex. 2.75 is proven that the differential equation (5)
with similar substitution can be transformed into the differential equation with
constant coefficients

y"+ay +y=0,
which is a special case of the equation (13).
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SEQUENTIALLY CONVERGENT MAPPINGS AND COMMON FIXED
POINTS OF MAPPINGS IN 2-BANACH SPACES

Martin Lukarevski, Samoil Malceski?

Abstract. In the past few years, the classical results about the theory of
fixed point are transmitted in 2-Banach spaces, defined by A. White
(see [3] and [8]). Several generalizations of Kannan, Chatterjea and
Koparde-Waghmode theorems are given in [1], [4], [5] and [7]. In this
paper, several generalizations of already known theorems about
common fixed points of mappings in 2-Banach spaces, are proven, by
using the sequentially convergent mappings.

1. INTRODUCTION

In 1968 White ([3]) introduces 2-Banach spaces. 2-Banach spaces are being
studied by several authors, and certain results can be seen in [8]. Further,
analogously as in normed space P. K. Hatikrishnan and K. T. Ravindran in [6]
are introducing the term contraction mapping to 2-normed space as follows.

Definition 1 ([6]). Let (L,||--]]) be a real vector 2-normed space. The mapping
S:L —L is contraction if there is 4 €[0,1) such that
||Sx—Sy,z|<A||x-Y,z]|,forall x,y,zeL.

Regarding contraction mapping Hatikrishnan and Ravindran in [6] proved
that contraction mapping has a unique fixed point in closed and restricted subset
of 2-Banach space. Further, in [1], [4], [5] and [7] are proven more results
related to fixed points of contraction mapping of 2-Banach spaces, and in [7] are
proven several results for common fixed points of contraction mapping defined
on the same 2-Banach space.

2010 Mathematics Subject Classification. 46J10, 46J15, 47H10
Key words and phrases. 2-normed spaces, 2-Banach spaces, fixed point, contraction
mappings
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In our further considerations, we will give some generalizations of the above
results for common fixed points of mapping defined on the same 2-Banach
space. Thus, the mentioned generalizations we will do with the help of so-called
sequentially convergent mappings which are defined as follows.

Definition 2. Let (L,||-,-||) be a 2-normed space. A mapping T:L — L is said
to be sequentially convergent if, for every sequence {y,}, if {Ty,} is
convergent then {y,} also is convergent.

2. COMMON FIXED POINTS OF MAPPING OF
THE KANNAN TYPE

Theorem 1. Let (L,||-,-]]) be a 2- Banach space, S;,S,:L— L and mapping
T:L—L is continuous, injection and sequentially convergent. If &« >0, y >0
are such that 2« + y <1 and

ITSIX=TSpy, z|[< & TX—TSyx, z ||+ Ty —TSpy. z[) + 7 | Tx=Ty.z||, (1)
for each x,y,ze L, then S; and S, have a unique common fixed point ze L.
Proof. Let x, be an arbitrary point of L and let the sequence {x,} be defined
With Xoni1 =S1Xon, Xoni2 =SoXony, for n=0,12,.... If there is n>0 such
that X, = X1 = X2, then it is easy to prove that u=x, is a common fixed
point for S; and S,. Therefore, let's assume that there do not exist three
different consecutive equal members of the sequence{x,}. So, using
inequalities (1), it is easy to prove that for each n>1 and for each ze L the
following holds true
141 = TXon, Z I (| TXns1 ~TXon ZI1+ | TXon — a1, Z () + 7 [ TXon ~Ton_1. 2l
and

TXan-1 = TX2n, ZlI€ @(l| TXan—2 = TXan-1, Z || + | TX2n-1 = TXzn, Z1))
+7 ITXon—2 = TXon-1. 2|,
from which it follows that
||Txn+1 _Tanz ”Si”TXn _TXn—la z ” ) (2)

for each n=0,1,2,..., where }tzf_—Zd. Now from inequality (2) it follows

that
X041 = TXn, Z IS A™ | T = T, 2, 3)
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for each zeL and for each n=0,1,2,.... But, then from inequality (3) follows
that for each m,ne N, n>m and for each z € L the following holds true

m
Xy =Txm, 2 ”31/1_7 T4 —Txo, z]l,

which means that the sequence {Tx,} is Cauchy and because space L is 2-
Banach we get that the sequence {Tx,} is convergent. Further, the mapping
T:L—L is sequentially convergent and because the sequence {Tx,} is
convergent, from definition 2 follows that the sequence {x,} is convergent, i.e.

exists ueL such that lim x, =u. Now from the continuity of T follows that
N—0

lim Tx, =Tu. Then, for each z € L the following holds true
N—o0

ITu=TSu, I Tu =TXzn42, Z |+ | TXon42 = TSU, Z ||
| Tu—=TXons2, 2|+ TSoXonsa — TS, Z ||
<ITu=Txons2, Z I+ TU=TSU, Z ||+ | o1 = TS2Xon41. 2 1)
+ 7 ITu=Txon g, 2|
ITu=TxXons2, Z ||+ (| Tu =TS, 2 ||+ || TXon 41 = TX2n42, 2 1))
+7ITu=Txony, 21l
If in the last inequality we take that n— oo, for each z € L the following holds
true
Tu-TSu, z||< e ||Tu-TSu, z||,
and since a <1, we conclude that ||[TS;u—Tu,z||=0, for each zelL, ie.
TSu=Tu. But, T s injection, soSiu=u, i.e. u is fixed point onS,.
Analogously can be proved that u is fixed point of S,. Let ve L is another
fixed point of S, , i.e. Spv=v. Then, for each z L the following holds true
| Tu=Tv,z|H|TSu-TSyv, z||
Sa(|Tu=TSyv, z||+||Tv =TS, z|) + 7 [| Tu-Tv, z||
=@a+p)[Tu-Tv,z|,
and as 2a+ B <1 we get that for each zeL the following holds true
|| Tu—=Tv,z||=0, from which follows Tu=Tv. But, T is injection,sou=v. =

Corollary 1. Let (L,||-,-||) be a 2- Banach space, S;,S,:L— L and mapping
T:L— L is continuous, injection and sequentially convergent. If >0, y>0
are such that 2« +y <1 and
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TX-TS;X, 2> +[Ty-TS,y, ||

TS X—TS,y, 2 [< !
ITSIX =TSy, 2l< & S m s oy =TS,y a1

+y[ITx=Ty,z][,

for each x,y,zeL, z#0, thenS; and S, have a unique common fixed point

zel.
Proof. From inequality of condition follows inequality (1). Now the assertion
follows from Theorem 1. m

Corollary 2. Let (L,||-,-]|) be a 2- Banach space, S;,S,:L— L and mapping
T:L— L is continuous, injection and sequentially convergent. If 0< A <1 and
TS X =TSy, z[I< 2-JTX =TS %, z[|-ITY =TSay, z I -ITx =Ty, z I,
foreach x,y,zeL, then S; and S, have a unique common fixed point ze L.

Proof. From the inequality between the arithmetic and geometric mean follows
that

d(TS1x,TSyy) < % (d(Tx,TS1x) +d(Ty,TS,y) + pd(TX,Ty)) .

Now the assertion follows from Theorem 1 for o =y = % . ;

Corollary 3. Let (L,||--|]) be a 2- Banach space, Slp,Sg :L—>L, p,geN and

mapping T:L—L is continuous, injection and sequentially convergent. If
a >0,y >0 are such that 2« + <1 and

ITSPX=TSFy, 2| a(I TX=TSPX, 2 ||+ Ty =TSy, z[) + 7 [ Tx=Ty, 2],
foreach x,y,zeL.Then S; and S, have a unique common fixed pointue L.
Proof. From Theorem 1 follows that mappings Slp and Sg have a unique
common fixed point u e L. That means SPu=u, so Syu=S;(Su)=SP(S),
and S;u is fixed point of Slp. Analogously, we can prove that S,u is fixed
point of Sg . But, from the proof of Theorem 1 follows that mappings Sg and

Slp have unique fixed point, so u=S,u and u=S;u. According to that, ue L

is a unique common fixed point of S; and S,. Clearly, if veL is another
unique common fixed point of S; and S,, then it is a common fixed point of SlID

and S5 . But, S and SJ have a unique common fixed point, so v=u. m
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Remark 1. Mapping T:L—L defined by Tx=x,xeL is sequentially

convergent. Therefore, if in theorem 1 and the corollaries 1, 2 and 3 we take that
Tx =x follows Theorem 4 and corollaries 6, 7 and 8, [7].

3. COMMON FIXED POINTS OF MAPPINGS OF CHATTERJEA TYPE

Theorem 2. Let (L,||-,-]|) be a 2- Banach space, S;,S,:L— L and mapping
T:L— L is continuous, injection and sequentially convergent. If « >0, >0,
are such that 2« +y <1 and

ITSIX=TSzy, zl< (I TX=TSay, ||+ Ty =TSx, ) + ¥ [ TX =Ty, ||, (4)
foreach x,y,zeL,then S; and S, have a unique common fixed point ue L.
Proof. Let xq is arbitrary point from L and the sequence {x,} is defined with
Xonid =1 Xon, Xonso =SoXony, for n=0,12,.... If there is n>0 such that
Xn = Xn41 = Xns2, then u=x, is common fixed point of S; and S,. Therefore,
let's assume that there are three different consecutive equal members of the
sequence{x,}. Then, from nequality (4) follows that for every zeL and for
every n>1 the following holds true

I TXan41 = TXn, ZII< (|| Txon-1 = TXon, Z [l + [ TX2n = TX2n4, Z11)
+ 7 TXon —Txon-1. 21l
and
TXon-1 = Txon, ZlI< el TXon_2 = TXan 1. Z ||+ 1| TX2n 1 = TX2n, Z )
+71TXon—2 = TXon1. 21l
so for each z e L and for each n=0,1,2,... the following holds true
| X1 = TXn, ZIIS A X0 = TXn—1. 2l

where i:f_—Z<1. Then, for each zeL and for each n=0,12,.. the

following holds true

[ TXn41 = Tn, ZlIS 2™ | Tx =T, 2] (5)
Furthermore, using the inequality (5), in the same way as in the proof of
Theorem 1 can be proved that the sequence {Tx,}is convergent, from where it
follows that the sequence {x,} is convergent, i.e. there is ueL such that

lim x, =u and lim Tx, =Tu. We will prove that u is a fixed point of S;.
N—0 N—o0

For each z L we have



18 M. Lukareski, S. Mal&eski

ITU=TSu, z[[<| Tu =Txon,2, Z ||+ TXon42 =TS, 2|
= Tu =TXons2, 2|+ TSoXonq —TS1u, z ||
Tu=Txons2, Z | +a (| TXznig = TSU, Z[[+[| TU =TSp%n,41, 2 1))
+7 ITu=Txon . 2l
Tu=Txons2,Z ||+l TXan41 = TSU, Z ||+ ]I TU = TXpn4 2, 2]))
+7 I Tu=Txang, 2,
and if in the last inequality we take n—oo we get that for each zeL the
following holds true ||[Tu—-TSu,z||< || Tu—-TSu,z||, and how « <1, from the
last inequality follows || TS;u—Tu,z||=0, for each ze L. Now, as in the proof
of Theorem 1 we can conclude that u is fixed point of S;. Analogously can be
proved that u is fixed point of S,. Let veL is another fixed point of S,, i.e.
S,v=v. Foreach zeL the following holds true
| Tu=Tv,z||H|TS;u—-TSyv, z||
Sa(|Tu=TSyv, z||+||Tv=TSu, z ) + 7 || Tu=Tv, z||
=Qa+y)||Tu=Tv,z|.
Since 2a+y <1 from the last inequality it follows that for every zeL the
following holds true || Tu—Tv,z||=0, from which follows that Tu=Tv. But, T
is injection, so u=v. m

Corollary 4. Let (L,||-,-|[) be a 2-Banach space, S;,S,:L—L and the
mapping T:L—L is continuous, injection and sequentially convergent. If
a >0, y>0 aresuch that 2« +y <1 and

ITX=TSy. zIl* HITy-TS;x,zI[*
Tx=TS,y,z|HTy-TS;x,Z||
for each x,y,zeL, z#0, thenS; and S, have a unique common fixed point

[TSX-TSyy, z|<

+7[ITx =Ty, z|l,

uel.
Proof. From inequality of condition follows inequality (4). Now the assertion
follows from Theorem 2.m

Corollary 5. Let (L,||-,-]]) be a 2-Banach space, S;,S,:L— L and mapping
T:L— L iscontinuous, injection and sequentially convergent. If 0< A <1 and
[ITS1x=TSpy, z[I< - TX =TSy, z[I-ITy =TS, z |- I Tx =Ty, 2|,
foreach x,y,zeL, then S; and S, have a unique common fixed point zeL.
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Proof. From the inequality between the arithmetic and geometric mean follows
that

d(TS1x,TSpy) <£(d(TX,TSpy) +d(Ty, TSx) +d (Tx,Ty)) .

Now the assertion follows from Theorem 2 for o =y = % |

Corollary 6. Let (L,||--||) be a 2-Banach space, SP,SJ:L—>L, p,qeN and

mapping T:L— L is continuous, injection and sequentially convergent. If
a >0,y >0 are such that 2« + » <1 and

ITSPx=TSJy, zllK e TX=TSJy, || + ]I Ty =TS %, z [y + ¥ | Tx =Ty, z |,
foreach x,y,zeL.ThenS; and S, have a unique common fixed point ueL.
Proof. The proof is identical to the proof of the corollary 5. m

Remark 2. The mapping T:L — L determined by Tx=X, X e L is sequentially

convergent. Therefore, if in Theorem 2 and corollaries 4, 5 and 6 we take
Tx = x, follows the correctness of Theorem 5 and corollaries 9, 10 u 11, [7].

4, COMMON FIXED POINTS OF MAPPINGS OF KOPARDE-WAGHMODE TYPE

Theorem 3. Let (L,||-,-]|) be a 2-Banach space, S;,S,:L—L and mapping
T:L—L is continuous, injection and sequentially convergent. If >0, >0,
2a+y<1and
ITSX =TSy, 2 [P < (I TX=TSyx, 2 |7 +[| Ty =TSpy, 2 [?) + 7 [| Tx =Ty, z|[*, (6)
foreach x,y,zeL, then S; and S, have a unique common fixed point ue L.
Proof. Let xy be an arbitrary point of L and let the sequence {x,} is defined
With Xon1 =S1Xon, Xons2 =SoXonyg, for n=0,12,.... If there is an n>0 such
that X, =Xn41 =Xns2, then u=x, is a common fixed point for S; and S,.
Therefore, let's assume that there do not exist three consecutive equal members
of the sequence {x,}. Then, from inequality (6) follows that for each n>1 and
for each z e L the following holds true

I T%an41 = TXon, ZIP< @l TXon = TXons1, Z 7 + 1 X1 — Ton, 2 7)

2
+7 1 Txon = TXon-1, 2%,
and



20 M. Lukareski, S. Malceski

2 2 2
| T%2n1 = TXon, Z 1< (|| TXon_2 = TXon-1, Z|I” + [ TXon_1 = TXon II)
2
+7 I TXon—2 = TXon, 2|1,
from which it follows that for each n=0,1,2,... and for each zeL the
following holds true

||TXn+1 _TXnvZ ”S A ”TXn _TXn—l’ z ” ) (7)
where A= ‘f_—z <1. Now from inequality (7) follows
||TXn+l_TXnﬂZ||S/1n T —Txg, 21|, (8)

for each n=0,1,2,... and for each z e L. Furthermore, from inequality (8), in
the same way as in the proof of Theorem 1 it follows that the sequence {Tx,} is
convergent, and therefore the sequence {x,} is convergent also, i.e. exists

ue X suchthat lim x,=u and lim Tx, =Tu. We will prove that u is fixed
N—o0 nN—o0

point of S;. We have
ITu =TSy, Z[I<[Tu =Txon2, 2[1+ [ TXons2 =TS, Z |
= TU=Txony2, 2l + I TSU = TSpXpn41, 2 |

2 2 2
I Tu=Txon0. 2| +\/0!(||TU =TS, Z|I" +[ITXons1 = TSpXonsa, 2 [7) + 7 I TU =TXopug, 2l

= Tu=Txon. 2l +\/oc(||Tu ~T80,2 [P+ TXonag ~Tons, 2P +7 [ Tu=Tgpug, 2|

for each ne N and for each ze L. If in the last inequality we take n—o we
get that

[ Tu-TSu, z < Jad || Tu-TSyu, 2|,

for each ze L and how \/E<1, it follows that || Tu—TS;u,z||=0. Now, again
as in the proof of Theorem 1 we conclude that u is fixed point of S;.
Analogously it can be proved that u is fixed point of S,. Let ve L be another
fixed point of S,, i.e. Sov=v. Then, for each z e L the following holds true

I Tu=Tv,z|[?=|| TSu —TS,v, z |2
<a(|Tu=TSu, z|? +|| TV =TSV, z|?) + 7 | Tu=Tv, z||?

=7 Tu=Tv,z|?,
and how 0< <1 we get that ||Tu—Tv,z|=0, from where it follows that
Tu=Tv.But, T isinjection,so u=v.m
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Corollary 7. Let (L,||--[) be a 2-Banach space, S,SJ:L—L, p,geN and

mapping T:L—L is continuous, injection and sequentially convergent. If
a >0,y >0 aresuchthat 2« + y <1 and

2 2 2 2
ITSPx=TSJy, z [ < a(I Tx=TSPx, 2| +1I Ty =TSJy, z[|7) + ¥ [ Tx - Ty, z||*,

foreach x,y,zeL.Then S; and S, have a unique common fixed point ueL.
Proof. The proof is identical to the proof of the corollary 6. m

Remark 3. The mapping T:L — L determined by Tx=x, X e L is sequentially

convergent. Therefore, if in Theorem 3 and corollary 7 we take Tx=x, it
follows the correctness of Theorem 6 and corollary 12, [7].
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ABOUT A TWIN SOLUTION OF THE VEKUA EQUATION

Slagjana Brsakoska

Abstract. In the paper main object of research is the Vekua equation.
Two types of functions are found that are strongly connected to each
other because it will be proven that if one of them is a solution of the
Vekua equation, so will be the other one with a corresponding
condition. Three different cases are considered.

1. INTRODUCTION

G. V. Kolosov in 1909 [1], when he was solving a problem from the theory
of elasticity, introduced the expressions

lrou ov _du
5[& +|( ) and
lrou N, ou
5[& +'( )
known as operatory derivatives of a complex function W =W (2)=u(x,y)

+iv(x,y) from a complex variable z=x+iy and Z =x-1ly, respectively. The

operator rules for these derivatives are given in the monograph of I'. H.
IMonosxwut [2] (pages 18-31). In the mentioned monograph, are also defined the
so called operatory integrals

T f(z)dz and ? f(2)dz

by z=x+iy and Z =x—iy, respectively, from the complex function f = f(z)
in the area D < C, where their operatory rules are proven as well, page 32 - 41.

2010 Mathematics Subject Classification. 34M45, 35Q74.
Key words and phrases. areolar derivative, areolar equation, solution, analytic function,
Vekua equation.
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2. FORMULATION OF THE PROBLEM

Main object of this research is the Vekua equation
dW _ 457
7 AW + BW + F (1)

where the functions A= A(z), B=B(z),F =F(2) are arbitrary functions from
complex variable without any limitation or condition that they have to fulfill.

Because in general case there is no method for finding its general solution,
we explore the idea to find some solution of the Vekua equation (1) in the
following form:

W =W (¢(2).v(2)) )
where @ =¢(Z) is antyanalytic function and y =y(z) is analytic function.

3. MAIN RESULT

Case 1. Let W = ‘”((Z; be a solution of the equation (1) (and is from the form

(2)), i.e. it is a ratio from one antyanalytic and one analytic function. That means
that this function satisfies the equation (1), so if we find the operator derivative
by Z from W and replace it in (1) we get:

W _ ((/J(Z)) 1 dco(?)

iz ~dz\w(@)’  w(@) A

1 de@) _ A0@) 9(2)

vo e A TG+

7 (2)- dco(f AD(2)y (2) + Bo(Z)7(Z) + Fy (2)7(Z)

If we make one more transformation, we can get a proof to one more interesting

statement. If we add on both sides the expression (p(f)-% and given into

consideration that

d(’?(?f(ﬂ(i)) d(//(Z) §D(Z)+‘//(Z)

\_/

then, we get
WC) - L. o(2)-+ Alp@W (D) + B- p(D)7(2) + Fy ()7(2)
So, if
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V(@ (@) =1 and p(z2)- 94D _g 3)
we get another solution to the Vekua equation (1), i.e. the function
W, =@(Z)-w(Z) which is not from the form (2). It is an antyanalytic function.

If we want a solution that W =0, then ¢(Z)=0, which means that the second

condition in (3) is d“;g) =0.

So, now we can formulate the proven fact as a theorem.

Theorem 1. Let ¢ =¢(Z) be an antyanalytic function and w =w(z) be an

analytic function. If W = % is a solution to the Vekua equation (1), then

W, =@(Z)y/(Z) is also a solution to the Vekua equation (1), if the conditions (3)
are satisfied.

Case 2. Let W = % be a solution of the equation (1) (and is from the form

(2)), i.e. it is a ratio from one analytic and one antyanalytic function. That means
that this function satisfies the equation (1), so if we find the operator derivative
by Z from W and replace it in (1) we get:

dw _ d w(@ y(z) de()
TG vOsGy e

_w(@) de(@) _ Ay, pw(@
p’@z) * (co(Z)) " B(co(?)) +F

w((zzg 5(2)- 222 = N7 (2)p(2) + By (2)5(2) + F(2) - 7 (2)

If we make one more transformation, we can get a proof to another
interesting statement. Here we expect a new solution of the Vekua equation to
be the function W, =@(z) -y (z). It is analytic function, so its areolar derivative

is 0. So, if we add on both sides the expression dd, ,

~L8-5(2)- G2+ PO - A (@5() + Bu (95(2) + Fo(@) - 5(2)
So, if

then we get
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P(2)-p(2) =1 and LD (). 9D (4)

we get another solution to the Vekua equation (1), i.e. the function
W, =@(z)-w(z) which is not from the form (2). It is an analytic function.

Again, the second condition in (4), means that % =0.

So, now we can formulate the proven fact as a theorem.

Theorem 2. Let ¢=¢(Z) be an antyanalytic function and w =w(z) be an

analytic function. If W = % is a solution to the Vekua equation (1), then

W, =@(z)-w(z) is also a solution to the Vekua equation (1), if the conditions
(4) are satisfied.

Case 3. Let W =w/(2)(Z) is a solution of the equation (1) (and is from the
form (2)), i.e. it is a product from one antyanalytic and one analytic function.
That means that this function satisfies the equation (1), so if we find the
operator derivative by Z from W and replace it in (1) we get:

dw d(p(Z)

W _ 4, (2)p(2)) =/(2)-

v(2)- 388 _ Ay @)p(@) + By (D)D) + F

1 de@) _ , #(2) @(Z) 1
R AT O R 76 AT 6]

If we make one more transformation, we can get a proof to one more interesting

w(z) dy(2)
dz

statement. If we add on both sides the expression — and given into

consideration that

d“((D(Z))_ 1 (d(l’(z) (2 -z )d'//(z))_ 1 dAgo(f)_(p(Z)'cjzﬁ(Z)
72 (2)

w(7) w(z) dz ,/72(7) dz
then, we get
42Dy ALDy g 2D g1 o@D dr@)

v (Z) w(z) @) @) vi(z) €

So, if

w(2)7(z)=1 and —% ) o (5)
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~—

we get another solution to the Vekua equation (1), i.e. the function W, =%

which is not from the form (2). Again, (5) means that d‘zg) =0.

So, now we can formulate the proven fact as a theorem.

Theorem 3. Let ¢=¢(Z) be an antyanalytic function and w =w(z) be an

analytic function. If W = (2)@(Z) is a solution to the Vekua equation (1), then
W, = % is also a solution to the Vekua equation (1), if the conditions (5) are
satisfied.

Note. As we can see in all three cases, the second twin solution is not from the
form (2). The functions are different, but the conditions are similar.
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REMARK ABOUT CHARACTERIZATION
OF 2-INNER PRODUCT

Katerina Anevska® and Risto Mal&eski?

Abstract. Characterization of 2-inner product is focus of interest of
many mathematicians. In this paper proofs of two characterizations of
2- inner product, which are actually consequences of the Theorem 1
[15], are given. Also, generalizations of already know Hayashi (see
[4], pg. 297) and Zarantonello ([5]) inequalities are fully elaborated.

1. INTRODUCTION

The concepts of 2-norm and 2-inner product are two-dimensional analogies
to the concepts of norm and inner product. S. Gahler ([13]), 1965, gave the term
of 2-norm and R. Ehret ([11]), 1969, proved the following:

If (L,(,-]-))is a2-pre-Hilbert space, then

1%y ll= 0 x| )2, (1)
for all x,y eL, defines a 2-norm. So, we get the 2-normed space (L,||-||) and
furthermore for all x, y, z € L the following equalities are satisfied:

2 2
X+Y,2||° XY,z
| l 4|| I , @)

(x.y|z) =

Ix+yzIP +lx=y,zIP=2(xz|* +Il y, 2 ]I%). ©)
The equality (3) is analogue to the parallelogram equality, and it is said to be
parallelepiped equality. Moreover, 2-normed space L is 2-pre-Hilbert if and
only if the equality (3) is satisfied for all x,y,zeL.
The papers [1]-[3], [6], [12], [14]-[16] consist of many proven
characterizations about 2-inner product.

2010 Mathematics Subject Classification. 46C50, 46C15, 46B20
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Theorem 1 ([15]). Let (L,||-,-]) be a real 2-normed space. Then, L is a 2-pre-

Hilbert space if and only if the following condition is satisfied:
if n>3, x,X,...x,,ZzeL and &, a,,..,a, are real numbers such that

n
> aj =0, then
i=1

4 2 2
| Xaixi,z[I=- X aajllx—xj,z[|". = (4)

i= 1<i< j<n
2. CHARACTERIZATION OF 2-PRE-HILBERT SPACE

The characterization of 2-inneer product by applying the Euler-Lagrange
type of equality is elaborated in [6] or in other words generalization of Corollary
2.2 [8], is elaborated. The following theorem is one other proof of the above
stated generalization.

Theorem 2 ([6]). Let (L,|]|--|[) be a real 2-normed space. The 2-norm is
generated by 2-inner product if and only if the following equality is satisfied

2 _ 2 2 2
|lax+by, z| +|Iﬂb>< aay,z||” _ |Ix.zl +|Iy,2|l , (5)
4 yof3 a B

forallx,y,zeL andforall a,beR, @, >0, y =ca® + fo°.
Proof. Let L be a real 2-normed space such that for all x,y,zeL and for all

abeR, «,5>0, y =qa’ +ﬁb2 the equality (5) is satisfied. For
a=pF=a=b=1, the equality (5) is transformed to an equality which is
equivalent to the parallelepiped equality, (3), what actually means that L is 2-
pre-Hilbert space in which the 2-inner product is defined as (2) and moreover
(2) holds true.

Conversely, let 2-inner product, which determines the 2-norm, exist and let

x,y,zelL and a,beR, a, >0 be such that ;/:aaz +ﬁ'b2 is satisfied. For
alzﬁ,az=%,a3=—%,x1=x,x2=y,x3=0

theorem 1 is transformed as the following

ax+by,z|”  a(a+b 2 b(atbh 2 2

Further, for
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al—bf = ~_bbaa X=X, Xp=Y,%3=0

oy’ \l_s_m

theorem 1 is transformed as the following

|| Bbx—cay,z|’ _ b(bf—-a) 2 a(bp-aa) 2 abiy. )
7aﬂ - ay ”X’Z” /B}/ ” y!Z” + ¥ ”X y,Z” . (7)

Finally, if we summarize the equalities (6) and (7) and have also on mind that
y= aa® +/;’b2 we get the following

ax-+by, z||? bx—cay,z||* a(ath) b(bp-aa 2
I Y, 2| +||ﬂ y, z|| :( ( )+ (ﬁ ))HX,Z” +

4 yof3 4
b b b
+(E) a”“*”")uyzn
aa“+pb aa +ﬁb
== %2 |2 + 2222 |y, 2|12
_ x| lly.2P
== + ﬂ ,

i.e. the equality (5) is satisfied. m

The following theorem is actually generalization of M. S. Moslehian and J.
M. Rassias (Corollary 2.2, [9]) result.

Theorem 3.A real 2- normed space (L,||-||) is 2- pre-Hilfert space if and only
if for each n>2 and for all x,x,,..., X,z € L the equality (8) is satisfied

n n
Yo+ Yax.zlF= Y (e zl+Xalx.zl)?. 8)
ac{-113 i=2 ae{-11} i=2

Proof. Let (8) be satisfied for each n>2 and for all x,x,,...,x,,z€L. For
n=2, x=x and X, =y the equality (8) is transformed to the parallelepiped

equality (3). That actually means that L is 2-pre-Hilbert space in which the 2-
inner product is defined as (2) and furthermore (1) holds true.
Conversely, let a 2-normed space (L,||-,-|]) be a 2-pre-Hilbert space, n>2 and

X1: X9, Xy, Z €L
n
For a . =—-(1+ > &) and X,,4 =0, Theorem 1 is transformed as the

k=2
following:
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n 2 n+1 2
X+ 2 aixi, z||°=ll x + 2 &%, z]|
i—2 i—2

n 2 2
=@+ X2 a )l zlII” +2 a1 %, 2l17) -
K=2 i=2

L 2 2
—2allx-%.z[I° - X aajllx—xjz|

i=2 2<i<j<n
n 2 2 n n n 2

=2 0%, I+ X,z |1 2 a + 2 > ad %, z|l” -
i=1 k=2 k=2i=2

izk

L 2 2
-2l —-%.zII° - X aajllx—xjz
i—2 2<i<j<n

and since g e{-11}, for i=2,3,...,n, we get 2"t equalities of the above type.
By summarizing the such obtained equalities, we get the following.

n 2 ondd 2 n 2
> b+ 2 ax,zlF=2""2lIx.zII°+ 2 X allx.z|I*+
ael-11} i—2 i-1 a e_11pk=2

n n 9
+ X X Xaallxz|-
ay ,; e{-11}k=2i=2
izk

n
2
- 2 2glx-x.zlf -
88 11}i=2

2
- 2 Y giajllx —xjz|l

a8 e{-11}2<i<j<n

n
=2"13 1%, 2|7
i=1
d 2
= Y (Ixzl+2 % zl)?,
ae{-11} i=2

i.e. the equality (8) holds true. m
3. GENERALIZATION OF HAYASHI AND ZARANTONELLO INEQUALITIES
The following theorems, are actually generalization of two already known

equalities, obtained by using theorem 1. Thus, we will firstly give a
generalization of Hayashi (see [4], pg. 297) inequality for complex numbers.
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Theorem 4. Let (L,||-,-]|) be areal 2-normed space. Then

2 Ix=x,zll-Ix=Xp, 2l % =X, Z[| 21 X = X2, Z I | X2 = X3, Z | | X3 = Xq, Z[| (9)
cyclic

for all x,%;,Xy,%3,z € L. The inequality is transformed to an equality, if at least
one of the sets {x—xq,z},{x—Xo,z},{x—x3,2} is linearly dependent or more
over if the set

IXy—e.2] — x—%.2]
X—X1)+ X—Xo)+ X—Xq),2
o XX+ g g X X2) g 7 (X %e) 2

is linearly dependent.
Proof. Let at least one of the sets {x—xq,z},{X—Xo,z},{x—X3,2} be linearly
dependent. With no loose of the generality, let {x—x;,z}be such the set, i.e.

X=X +az. Then, the properties of 2-norm imply the following
2 Ix=x, zll- X=X, z [l % = %o, Z || =l X = Xo, Z |- [ X = X3, Z || Xp = X3, Z |
cyclic
¥ +az—Xp. 2 +az—x3, 2| X — X3, 2|
=% =x2, 2|l 11Xz = X3, 2| -[ X3 =0, 2,
The above means that (9) is an equality.
Let’s suppose that the sets {x—xq,z},{x—xX5,2},{x—x%3,z} are linearly

3

independent. For a;=-> a; and x4 =x in Theorem 1, we get that for all
i=1

X, %1, X2, %3,Z€ L and for all a,a,,a3 €R the equality

3 3 , 3 3 ,
||Zaixi_x§1ai’z||Z(Zai)'(zai”x_xi’zn)_ 2 giaj|lxi—xj.z|

i= i=1 i=1 1<i<j<3
holds true.
The right side of the above equality is nonnegative. Therefore, for all
X, %1, X,%3,2 € L and for all a,a,,a3 €R the inequality (10) holds true

3 3 ,
a) Xallx-—x,zIDz > aajllx—xjz[". (10)

i=1 i=1 1<i<j<3
For

_lexedl el L Il
17 Tl 92 7 Tix=xg,2l " 3 7 Tx—xa.7]]

the inequality (10) is transformed as the followings

lIX;—x;. 2l [1X;=X%.2ll [Ix =%, 2] 2
Xi =X, Z ||| X=X, 2 || = P % — X, 2

ii_Z =N Z ” (| -1l ko Z ) Z Txxzll Tx=x;.zl 1% i |

jEk i# 2k i j#k#i
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[Ix;—x;, 2|
||XI_XJZ|| ) ||Xi—Xj,Z||‘||X—Xk,Z||Z
K e ki

2

i j=k=i

S a=Xa, 21X X3, 2IHIXs %4, 2]l
[IX=xq, Z|HIX—X2, Z|HIx—X3, 2|

2 X =%zl x =, z]]
i j=k=i

¥ =2l Jxy=%o . 2IHIXp ~Xg ZlHIX3—q 2l
IX=xc,zll = lx=xq,Z]HIx=x2, 2l x5, 2l

i j=k=#i
Clearly, the last inequality is equivalent to the inequality (9). The proof implies
that the inequality (9) might be transformed to an equality if (10) is an equality,

3 3
i.e. if the set {3 ajxj — x> qj,z} is linearly dependent, that is if the set
i=1 i=1

[I%o—X3, 2| [IX3—xq¢, ]| [1x,—Xq, 2l
X—X1)+ X—Xo)+ X—Xq),Z
o KX+ g g X %)+ pog 71 (X% 2}

is linearly dependent. m

On the end of our considerations we will generalize the Zarantonello ([5]),
inequality, i.e. we will prove the following theorem.

Theorem 5. Let L be a real 2-pre-Hilbert space and f:L — L be a function
such that
I £0)—f(y).zlIIx=y.zll, (11)

n

holds true, for all x,y,xeL, Then for all &,a,,...,a, >0, such that > g =1
i=1

and for all y1,y5,...,Yn,z€L

138t -F(avzlPs S aaly -zl -1 f 00— . 2l?) (12)
i=1 k=1 I<i<k<n

holds true.
Proof. For

n
Xi=f(y),i=12,..,.n, X1 = f(_zlaiyi)
i=

and a,,; =-1, in Theorem 1 and then by using the inequality (11) and the

n
properties of 2-norm, we get that for all &,a,,...,a, >0 such that > a; =1 and
i=1

forall y;,y,,....,¥n, Z€L, the following holds true
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n n 2
1> & f(y)— (2 acye).zll°=
i1 k=1

=Y a I (%) - f(ki_lakyk),zn2 =S aa 170D -F 0z IR

i=1 I<i<k<n

<Yalyi-SavozlP- X aacl SO0 -z l?

i=1 k=1 I<i<k<n
n n n 2 2
=212 ayi— > aye.zllc = X aja Il f i) — F(ye) 2l
i=1 k=1 k=1 1<i<k<n
n n
=YalXati-v)zlP- X agallf0)-re) =P
i= k=1 1<i<k<n

On the other hand, for x =Yy —VYx,k=12,..,n, X4 =0 and a,,;=-1 in
Theorem 1 and also by using that a; >0, for i =1,2,...,n, we get that

n n
2 2 2
I 2 ac(yi =) zll*= 2 acllVi—yk. 2l = 2 aiajllyi—yj.z|l
k=1 k=1 1<i<j<n

4 2
<2z acllyi—yk.zlI”.
k=1
Finally, the last two inequalities imply the inequality (12). m
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ABOUT THE ACCORDANCE BETWEEN THE CANONICAL VEKUA
DIFFERENTIAL EQUATION AND THE GENERALIZED
HOMOGENEOUS DIFFERENTIAL EQUATION

Slagjana Brsakoska

Abstract. In the paper two equations, the canonical Vekua differential
equation and the generalized homogeneous differential equation, are
considered. The main result is the theorem with the condition for the
accordance between this two equations.

1. INTRODUCTION

The equation
dw _ Wi
G =AW +BW +F 1)
where A=A(z),B=B(z) and F=F(z) are given complex functions from a
complex variable ze D < C is the well known Vekua equation [1] according to
the unknown function W =W (z) =u +iv. The derivative on the left side of this

equation has been introduced by G.V. Kolosov in 1909 [2]. During his work on
a problem from the theory of elasticity, he introduced the expressions

1rou ov i OV ouvy _ ('jW

_[_X+_+|(_X__)] _Z (2)
and

1rou OV |, ifOV , OU\] _ 6W

_[_X__+|(_+_)] _Z (3)

2010 Mathematics Subject Classification. 34M45, 35Q74.
Key words and phrases. areolar derivative, areolar equation, analytic function, Vekua
equation, generalized homogeneous differential equation.
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known as operator derivatives of a complex function W =W (z) =u(x,y)+
iv(x,y) from a complex variable z=x+iy and Z =x—iy corresponding. The

operating rules for this derivatives are completely given in the monograph of T'.
H.ITonoxwuu [3] (pagel8-31). In the mentioned monograph are defined so cold

A N
operator integrals [ f(z)dz and [ f(z)dZz from z=x+iy and Z=x-iy

corresponding (page 32-41). As for the complex integration in the same
monograph is emphasized that it is assumed that all operator integrals can be
solved in the area D.

In the Vekua equation (1) the unknown function W =W (z) is under the sign

of a complex conjugation which is equivalent to the fact that B =B(z) is not

identically equaled to zero in D. That is why for (1) the quadratures that we
have for the equations where the unknown function W =W (z) is not under the
sign of a complex conjugation, stop existing.

This equation is important not only for the fact that it came from a practical
problem, but also because depending on the coefficients A, B and F the equation
(1) defines different classes of generalized analytic functions. For example, for
F =F(z)=0 in D the equation (1) i.e.

W _ AW +BW 4)

which is called canonical Vekua equation, defines so cold generalized analytic
functions from fourth class; and for A=0 and F =0 in D, the equation (1) i.e.

the equation OA!?‘Q’zBW defines so cold generalized analytic functions from

third class or the (r+is)-analytic functions [3], [4].
Those are the cases when B =0. But if we put B=0, we get the following
special cases. In the case A=0, B=0 and F =0 in the working area D C

the equation (1) takes the following expression %—VZ,V =0 and this equation, in the

class of the functions W =u(x, y) +iv(x, y) whose real and imaginary parts have
unbroken partial derivatives uy,uy,vy and vy in D, is a complex writing of the

Cauchy - Riemann conditions. In other words it defines the analytic functions in
the sense of the classic theory of the analytic functions. In the case B=0 in D
i.e. %—\’Z,Vz AW + F is the so cold areolar linear differential equation [3] (page
39-40) and it can be solved with quadratures by the formula:
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fA(z)dz A —f A(z)dz
W=¢e [®(2)+ [ F(2)e dz].

Here ®=®d(z)is an arbitrary analytic function in the role of an integral
constant.

2. FORMULATION OF THE PROBLEM AND MAIN RESULT
In the paper [5], the following lemma is proved.

Lemma. The equations

= f(zw) (5)

and

dw _

= 9@W) (6)
where % =0, have common solutions if and only if

df ~ df  dg , dg g —

w9 wtaw T 9 ()
It is assumed that the operator derivatives in (7) exist and that they are
continuous functions in the working area D from the complex plane.

In this paper we are examining the accordance between the canonical Vekua
equation (4), on one side and the generalized homogeneous differential equation

aw _ W) ®)

on the other side, where ¢ = go(z) is a given complex functions from a complex

variable ze D < C, such that j_v% =0. The canonical Vekua equation (4) is an

equation of type (6) where

g(z,W) = AW + BW 9)
and the generalized homogeneous differential equation (8) is an equation of
type (5), where

f(zW) =p(W). (10)
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Here, the function f is an analytic function according to W , which means that

;—fw =0. That is the only condition to be accomplished, so that we can use the

mentioned lemma.
If we calculate all the derivatives in (7), we get that

df _de df _ 4 Wy-2¢ 1
7 QT aw ~aw V) Taw 7
dg _day ,dByy  do _ dg _
-V taW. @w=A Gy =B

And if we put them in (7) we get that

‘;?+ quv) 1(AW +BW)= dAW +dBW+A(p+ B(AW + BW).

Now we write the last equation in the following form
d d 2y, d
W (5 ‘/’-A—d—A—|B| )+W (52 ¢-§—d—B—AB)+d—;’—A¢=o.

This linear combination is true only if the following system of equation is
satisfied

a4 -18r=0
do B_d8_Ag_g. (11)
g—?— Ap=0
If we eliminate the derlvatlve from the first and the second equation in
the system (11), we get
do _z(da, P
A( ALlB] )-ﬁ———AB 0

BdA AdB+B|B| ~B|A[?=0
Because of the fact that d L (&)= 2(C'AB AdB) we get that
2d /A 2 2\
Bz () +B(BI|"-|AI7)=0
d (Ay, IBPHA? _
a@rTs 0
or

A=0 (12)

Q—lQ.)

L(8)+B-

o>
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which is the condition between the coefficients in the Vekua equation (4) in
order to has common solutions with the equation (8).

The third equation in the system (11) is an areolar equation which can be
solved, i.e.

>

=A

AS) !l—\
RIS

|n¢V7V=fA(z)dz+|nq>(z)

o) = d(2)- exp(f A(z)dZ) (13)

Here ®=®(z)is an arbitrary analytic function in the role of an integral
constant.

So, we have proved the following

Theorem. The Vekua equation (4) and the generalized homogeneous
equation (8) have common solutions if and only if the condition (12) is fulfilled
and the relation between the coefficients of the two equations are given with
(13).

Note 1. The condition (12) that we got, works for example if A=B.

Note 2. In [6], we can see the condition between the coefficients in the
Vekua equation (1) (and (4) also), in order to has common solutions with the
generalized linear equation and the relation between its coefficients. If we
compare the theorems, they have similar statement, but different conditions and
relations that we mentioned. Further more, in [6] both the equations (1) and (4)
are considered and in this case only the equation (4) is considered. This refers to
the easier manipulation with the generalized linear equation in comparison with
the generalized homogeneous equation.
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ON (3,2,p)-S-K-METRIZABLE SPACES

Sonja Calamani®, Don&o Dimovski®
Marzanna Seweryn-Kuzmanovska®

Abstract. For a given (3,2,0)- metric d on a set M, we show that any
(3,2, p) -S-K-metrizable space has an open refinement which is both locally
finite and o-discrete

1. INTRODUCTION

If we review historically the geometric properties, their axiomatic classification
and the generalization of metric spaces we can see that, they have been subject of
interest of great number of mathematicians and from their work a lot of have
been developed. We will mention some of them: K. Menger ([14]), V. Nemytzki,
P. S. Aleksandrov ([16], [1]), Z. Mamuzic ([13]), S. Gahler ([11]), A. V.
Arhangelskii, M. Choban, S. Nedev ([2], [3], [17]), R. Kopperman ([12]), J. Usan
([18]), B. C. Dhage, Z. Mustafa, B. Sims ([6], [15]). The notion of (n,m, p)-
metric is introduced in [7]. Connections between some of the topologies induced
by a (3,1, p) -metric d and topologies induced by a pseudo-o-metric, o-metric and
symmetric are given in [8]. For a given (3, j, p) -metric d onaset M, je{l,2},
seven topologies 7(G,d),z(H,d),z(D,d),z(N,d),z(W,d),z(S,d) and z(K,d) on
M, induced by d, are defined in [4], and several properties of these topologies
are shown.

In this paper we consider only the topologies z(S,d) and z(K,d) induced by a
(3,2, p) -metric d and for z=17(S,d)=7(K,d) we prove that any open cover of
a (3,2, p) -S-K-metrizable space (M,7) has: a) an open refinement which is both
locally finite and o -discrete, b) o -discrete base, and c) a (3,2, p) -S-K-metri-

2010 Mathematics Subject Classification. 54A10, 54E35, 54E99
Key words and phrases. (3,2, p) -metric, (3,2, p) -S-K-metrizable spaces
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zable space (M,7) is perfectly normal.

2. SOME PROPERTIES OF (3,2, p) -S-K-METRIZABLE SPACES

In this part we state the notions (defined in [4]) used later.

Let M be a nonempty set, and let d : M 3 LR =[0,00). We state four condi-
tions for such a map.
(MO0) d(x,x,x)=0, forany xeM;
(P) d(x,y,2)=d(x,z,y¥)=d(y,x,z), forany x,y,ze M;
(M1 d(x,y,z)<d(x,y,a)+d(x,a,z)+d(a,y,z), forany x,y,z,aeM,; and
(M2) d(x,vy,2)<d(x,a,b)+d(a,y,b)+d(a,b,z), forany x,y,z,a,be M.

Foramap d asabovelet p={(x,y,2)|(x,y,2)eM 3,d(x, y,z) =0}. The set
p isa (3,])-equivalence on M, as defined and discussed in [7], [4]. The set
A={(x,x,X) |[xeM} is a (3,]j)-equivalence on M, j=12, and the set
V={(x,x,y)|x,yeM} is a (3,1)-equivalence, but it is not a (3,2)-equivalence
on M. The condition (MO) implies that A < p.

Definition 1. Let d:M? — R =[0,0) and p be as above. If d satisfies(MO),
(P) and (M2),wesaythat d isa (3,2, p)-metric on M.

Let d bea (3,2,p)-metricon M, xeM and &£>0. As in [4], we consider

the following & —ball, as subsets of M :
L(x,&)={yly e M,d(x,y,y) <&} -“little” ¢ -ball with center in x and radius &.

Among the others, a (3,2, p) -metric d on M induces the following topolo-
gies as in [4]:
1) z(K,d)-the topology generated by all the ¢ -balls L(x,&), i.e. the topolo-
gy whose base is the set of the finite intersections of ¢ -balls L(x,¢) ;
2) 7(S,d)-the topology defined by: U ez(S,d) iff ¥XU, Je&>0 such that
L(x,e)cU.

Proposition 1. The ball L(x,&) ez(S,d), forany x onM and ¢ >0.
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Proof. It is enough to show that for any yeL(x,&) there is 6 >0, such that
L(y,0)cL(x,e). Let yel(x,e) and o&=(e—d(xy,y))/4. Then, for any
zelL(y,o) we have:

d(x,z,z) <d(x,y,y)+2d(z,y,Y)
<d(x,y,y)+4d(y,z,2)
<d(x,y,y)+46 =¢.

This implies that ze L(x,¢), i.e. ze L(y,5) < L(X,¢&).

From the proposition 1, it follows that z(S,d)=7(K,d), for any (3,2,p) -
metric d on M.

Definition 2. We say that a topological space (M,7) is (3,2, p) -S-K-metrizable
viaa (3,2, p) -metric d on M, if z=7S,d)=7«K,d).

In the following theorem, one of the most important properties of
(3,2, p) -S-K-metrizable space is established.

Let (M,7) bea (3,2, p) -S-K-metrizable topological space.

Proposition 2. Any open cover of a (3,2, p) -S-K-metrizable space has an open

refinement which is both locally finite and o -discrete.
Proof. Let d be a (3,2,p)-metric on M and z=7(S,d)=7(K,d). Let

%= {Ug|seS } be an open cover of a (3,2, p) -S-K-metrizable space (M,7),
and let < be a well-ordering relation on the set S. Define inductively families
Y, ={VsnlseS,neN} of subsets of (M,z) by letting

Vg n =UL(x,1/10M),

where the union is taken over all points xeM satisfying the following
conditions:

s is the smallest element of S such that x eUg, (1)
xgVj for j<n and tes, (2
L(x,11/10") cUs. (3)

It follows from the definition of V; , that the sets Vg, are open, and (3)

implies that V5 , cUg. Let ye M. Lets be the smallest element of S such that
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yeUs. Then there is neN such that L(y,11/10") cUg. It is clear that, we
have yeV;j for j<n anda teS or yeVs,. Hence, the union = {7,
|n e N} is an open refinement of the cover % ={Ug |s e S}.

We will prove that forany n € Nif y; € Vg ,,, v, € g, 5, and s; # s,, then

d(¥1,¥2,Y2)>1/10" and d(yy,yy,y,) >1/10", 4)

and this will show that the families / , are discrete, because any 1/10™-L-
ball meets at most one member of 2/ .

Let s) <s,. By the definition of Vg , and Vg, there are points x and X,

satisfying (1), (2) and (3) given above, such that y; € L(xl,lllon)gvsl,n and

Y2 €L(%,1/10") Vg, . From (3) it follows that L(x,11/10") U, and

Sl’
from (1) we see that x, U . Hence, d (%, Xp,Xp) >11/10". The inequalities

11/10" <d(Xq, X9, Xp) <d(Xq, Y1, Y1) +2d (X2, V1, Y1)
<d (X, Y1, Y1) +2d(Xp, Y2, ¥2) +4d (Y1, Y2, ¥2)
<3/10" +4d (y1,¥2,Y2),
imply that d(yy,Y,,Y,)>2/10" >1/10".
Also the inequalities,
11/10" <d (%, X2, X2) <d (%1, Y1, Y1) +2d (X2, Y1, Y1)
<d (X, Y1, Y1) +2d (X2, Y2, Y2) +4d (Y1, Y2, ¥2)
<3/10" +4d (yy,Y2,Y2)<3/10" +8d (y1, Y1, ¥2).

imply that d(yy,y;,y,)>1/10".

From the latter follows the proof of (4).
Furthermore, it is enough to show that for each teS and for each pair
K, jeN,

if L(y,1/10%)cV; ; then L(y, /10 ) ~vg, =@
for n>k+ j and seS. 5)
From the definition of Vs, we have Vs, cVs g, then V; j <V jq for

each teS and each jeN. From (2) it follows that each x of Vi, ,=u

L(x,1/10M), xeVy j for j<n. Hence, for n>k+ j>k and L(y,l/lOk)g
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V; ; it follows that for each x of the union UL(x,1/10™), d(y,x,x) >1/10K,

.
We will show that L(y,1/10k+j)mvs’n¢® for n<k+j. Let yeM, then
there are Kk, j,t such that L(y,l/lok)gvt,j and n<k+ j. For & , discrete
family and m<k+ j, there is &, such that L(y,dy,) "Vs =< for one s,m.
Let o =min{ol<m<k+j} then L(y,0) Vg =D for all m<k+j, ie.

L(y,l/lOk“')mVS,n =& for n<k+ j. From the latter it follows that 2/, is

o-discrete and locally finite. Hence, & = { ? ,|neN} is o-discrete and
locally finite.

Proposition 3. Any (3,2, p) -S-K-metrizable space (M, 7) has a o -discrete base.
Proof. Let d be a (3,2, p) -metricon M and 7 =7(S,d) =7(K,d). For neN, let
% ,={L(x,1/n)|xM} be an open cover of M and let  , be o-discrete
refinement obtained in proposition 2. The definition of z(S,d) and z(K,d)
implies that % = { % ,|ne N} is a base for =1(S,d)=17(K,d). Since each ?/
is o-discrete refinement of % |, it follows that 2 = { 2 ,,|n e N} is o-discrete
refinement of 2 Hence, 2 is o-discrete base of (M, 7).

Corollary 1. Any (3,2, p) -S-K-metrizable space (M,z) has a o -locally finite
base.

We will prove that the existence of a o -locally finite base is also sufficient
for metrizability of a (3,2)-S-K-metrizable space (M,7).

Proposition 4. Any (3,2)-S-K-metrizable space (M, 7) is perfectly normal.

Proof. Let d be a (3,2)-metric on M and z=7(S,d)=7(K,d). Let = {7,
IneN}, where the families 2/ ,, are a locally finite, be a base for a space
(M, 7). Consider an arbitrary open set W < M. For any xeW there is a
natural number n(x) and an open set U, € 2/ (4 such that xeU, cU, cW.
Letting W, = {Uy|n(x) =n} we obtain a sequence Wy ,W,,---W,, neN of
open subsets of M such that W = _{W,|n € N} and by property: if {A}scs isa

locally finite family, then the family {K}SES also is locally finite, we have
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W, cW for neN. Normality of (M,7) is proven in [9]. Since W =U{W,|
n e N}, the space (M, 7) is perfectly normal.

Proposition 5. If p=A, then (M, ) is metrizable.
Proof. For p=A, and the fact that (M,7) is regular and has o -locally finite

base then from the metrization theorem of Nagata-Smirnov it follows that (M, 7)
is metrizable.
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Abstract A Steiner system S(t,k,v) isa pair (Q,B) of v-elementset Q and

a collection B of its k -element subsets (blocks), such that every t -element
subset of Q is contained in exactly one block. Systems S(2,3,v) are Steiner

triple systems (STS) and their algebraic representatives are the idempotent
totally symmetric quasigroups. Steiner quadruple systems (SQS) are systems
S(3,4,v), represented by the idempotent totally symmetric ternary

quasigroups.
For SQS (Q,B) and aeQ, by taking the set Q\{a} and the blocks

{{x,v,Zx, vy, z,a} € B}, a derived triple system is obtained. An SQS is called

homogenous if all of its derived triple systems are isomorphic.
In this paper sufficient conditions for SQS to be homogenous are given,

resulting with an algebraic representation of one class of homogenous
quadruple systems.

1. INTRODUCTION

A Steiner system S(t,k,v) is a pair (Q,B), where Q isa v-element set

and B is a collection of its k -element subsets (called blocks) with the property
that every t -element subset of Q is contained in a unique block of B . Systems

S(2,3,v) and S(3,4,v) are called Steiner triple system (STS) and Steiner
quadruple system (SQS) respectively.

2010 Mathematics Subject Classification. Primary 51E10; Secondary 05E15.
Key words and phrases. Steiner quasigroup, derived triple system, homogenous
quadruple system, variety
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There is a natural connection between SQS(v) and STS(v-1). Let
(Q,B) be an SQS(v) and choose an arbitrary element acQ. Let B, be the

collection of the 3-element subsets of Q\{a} which is obtained by selecting
all of the blocks of B containing the element a, and then excluding this element
from them. Then the pair (Q\{a},B,) isan STS(v—1). Such a Steiner triple

system is called a derived triple system (DTS) of the quadruple system (Q, B).
The problem whether or not every STS isa DTS of some quadruple system is
open.

Woolhouse in 1844 [12] posed the question: for which integers t,k, and v,
does an S(t,k,v) exist? Up to the present time, this problem is also unsolved in

general. However, several partial answers are given. Three years later, Kirkman
[7] showed that STS(v) exists if and only if v=1or3 (mod6), and

constructed systems S(3,4,2"), for every n. During the late 19" and early

20" century very much was written on the subject of STS, and very little on
SQS. Hanani [4] proved that the necessary condition v=2 or 4 (mod6) for the
existence of an SQS of orderv is also sufficient, by induction and using six
recursive constructions. However, the most extensive study of Steiner systems
probably was done in the 70s and the 80s of the last century, concerning the
various constructions of a single system and classes of certain type,
isomorphism problems, groups of automorphisms, classifications and
enumerations, embedings and partial systems, as well as their applications. The
development of the computers played significant role, especially in the past
thirty years.

Steiner triple and quadruple systems possess “algebraic twins”. Given an

STS(v) (Q,B), one can define a binary operation * on Q by a*b=c
whenever {a,b,c}eB, and axa=a. As there is a unique triple in B
containing two distinct elements, this operation is well defined. The groupoid
(Q.*) belongs to the variety determined by the identities:

X+ X=X

X-y=Yy-X

X-(x-y)=y.
Its members are idempotent totally symmetric quasigroups, also known as
Steiner quasigroups, since there is a two-way relationship between such
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quasigroups and Steiner triple systems. Namely, if (Q) is a v-element
Steiner quasigroup, then the sets {a,b,a-b}, a,beQ, a=b, are precisely the
blocks of an STS(V).

A similar correspondence exists between Steiner quadruple systems and
idempotent totally symmetric ternary quasigroups (Steiner 3-quasigroups). They
are defined by the following identities:

f(x,xy)=y

f(x,y,2)=f(xzy)=f(y.,xz)

f(xy, f(x, y,z)) =7
If (Q,B) is an SQS, then the ternary operation f on Q defined by the rules
f(a,ab)=f(ab,a)=f(ba,a)=b and f(ab,c)=d if and only if
{a,b,c,d} e B is well defined and satisfies the above identities. On the other
hand, if (Q, f) is a finite Steiner 3-quasigroup, then (Q,B) is an SQS, for B
consisting of the sets {a,b,c, f (a,b,c)}, where a,b and ¢ are distinct elements
of Q (see [1]). For the quadruple system (Q,B) corresponding to the Steiner
3-quasigroup (Q, f), we will say that it is induced by (Q, f). Note that for

aeQ, the DTS (Q\{a},By) of (QB) has an algebraic equivalent

(Q\{a},-) whose operation can be defined by the ternary operation f,
according to the rules
X‘y:{f(x,y,a), X#Y
X, X=Y.
We also say that the triple system (Q\{a},B,) isinduced by (Q\{a},").

An isomorphism from a Steiner system (Q,B;) with parameters t,k,v
onto a Steiner system (QZ,BZ) of the same type is a bijection ¢:Q; > Q,
which maps the k -tuples of Q; onto k -tuples of Q,. An automorphism of
(Q.,B) is an isomorphism of (Q,B) onto itself. If ¢ is an isomorphism from a
Steiner quasigroup (Qy,-) onto a Steiner quasigroup (Q,,*), then ¢ is also an
isomorphism from the corresponding STS (Q,B;) of (Q;,-) onto the
corresponding  STS (Q,,B,) of (Qy,*). Namely, if {ab,cjeB; then

o(c)=p(a-b)=p(a)*p(b), meaning that {p(a),¢(b),¢(c)} B, . The same
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property also holds for SQS. We use it to obtain an algebraic characterization

of one class of homogenous Steiner quadruple systems.

The stated relations between Steiner systems and Steiner quasigroups are of
great importance for both combinatorial and algebraic structures. Some
properties are easier to be proved algebraicly, and others combinatorially. If we
prove one in either way, then the corresponding property can be applied to the
other structure. In our paper we use algebraic tools to obtain the desired
combinatorial property.

2. DESCRIPTION OF A CLASS OF HOMOGENOUS SQS

Given an SQS, let g denote the number of pairwise non-isomorphic
derived triple systems. Obviously, 1< g <v, for any SQS(v). The least v for
which g>1 is 14. There are 4 non-isomorphic SQS(14), and for two of
them g =1, while for the other two g =2 (see [8]). It is clear that these are the
only two possible values for g since there are exactly two non-isomorphic
STS(13).

Although infinite classes of SQS with £ >2 were constructed, as well as
SQS(v) with g>t for any positive integer t (v much greater than t), the
question of determination of £ for any given SQS is very far from solved.
Moreover, no one as yet has found an order v such that for every k, 1<k <v,
there isan SQS(v) having g =Kk.

An SQS is said to be homogenous if its value of B is one, or equivalently
if all of its derived triple systems are isomorphic. If all the DTS of an SQS(v)
are pairwise non-isomorphic (£ =v), then the quadruple system is called

heterogenous.
In what follows, we give an algebraic description of one class of
homogenous Steiner quadruple systems.

Lemma. Let (Q,f) be a finite Steiner 3-quasigroup and ¢ be an
automorphism of Q. Then for aeQ, the derived triple systems (Q\{a},Ba)
and (Q\{(p(a)},B(D(a)) of the quadruple system induced by (Q,f) are

isomorphic.



Algebraic Representation of a ... 55

Proof. Let (Q,B) be the SQS induced by (Q,f) and define
w:Q\{a} >Q\{p(a)} by y(u)=p(u). Let (Q\{a},7) and (Q\{p(a)}*)
be the Steiner quasigroups which induce the triple systems (Q\{a},Ba) and
(Q\{¢(a)},B¢(a)) respectively. It is clear that y is a bijection, since ¢ is a

bijection. If U,VEQ\{ }, and u=v, then

(uev)=y(f(uv.a))=p(f(uv,a))
= f(o(u).0(v).0(a))
=o(u)* ( )=w(u)*y(v).

The equality w(u-u)=y (u)=w(u)*y(u) completes the proof.

Corrolary 1. Let (Q, f) be a finite Steiner 3-quasigroup with the property
that for every a,beQ, there is an automorphism ¢ such that (o(a)zb. Then

the quadruple system induced by (Q, f) is homogenous.

Note that the converse is false, and the smallest example of this is obtained
for order v=16 (see [8]).

Theorem. Let (Q, f) be a finite Steiner 3-quasigroup. Then the mapping
@(x) = f(s,t,x) is an automorphism of Q for each s,teQ, if and only if
f (a,b, f (u,v,w)) =f (f (a,b,u), f(ab,v), f (a,b,w)) is an identity of Q.
Proof. For every a,b,x,y,zeQ and the automorphism ¢(x)= f (a,b,x), we
have
(1 (abx).  (ab.y). f (ab.2))= (o(x).0(y).0(2))

=p(f(x, y,z)): f (a,b, f(xy.2)).
Conversely, let f(a,b, f (u,v,w))z f (f (a,b,u), f(ab,v), f (a,b,w)) be an
identity of Q, and s,t be arbitrary elements of Q. First we prove that the
mapping ¢:Q —Q defined by ¢(x)= f(s,t,x) isa bijection.
Since f isa quasigroup operation,

p(X)=p(y)= f(sit,x)=f(s;t,y)=>x=y,
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which means that ¢ is injective.
Let veQ and u= f(s,t,v). Then

p(u)="f(stu)="1 (st f(stv))=v,
by the fact that (Q, f) is a Steiner 3-quasigroup. Hence, ¢ is surjective.
The mapping ¢ is a homomorphism, as a direct consequence of the identity.
Namely, for x,y,zeQ, we have

p(f(xy.2))=f(st f(xy.2)=f(f(st.x), f(sty) f(st.2))

= f(o(x).0(y).0(2)).

Corrolary2. Let V be the variety of algebras with one ternary operation,
defined by the identities

f(x,xy)=y

f(x,y,2)=f(xzy)=f(y.x2)

f(x,y,f(x,y,z)):z

f(ab, f(xy.z))=f(f(abx),f(aby) f(abz)).
Then every finite algebra of V induces a homogenous SQS.

Proof. The first three of the defining identities of V determine the variety of
Steiner 3-quasigroups, hence V is its subvariety.

Let (Q, f)be a finite algebra of V and (Q,B) be its induced quadruple
system. We prove that for arbitrary elements a,beQ, the derived systems
(Q\{a},B,) and (Q\ {a},By) of the quadruple system (Q,B) are isomorphic.
Let ¢:Q—>Q be the mapping defined by ¢(x)= f(a b X Then ¢ is an
automorphism of Q by the preceding theorem. By the defining identities of V,
we obtain ¢(a)= f(a,b,a)=b. Then by using the result of the Lemma, we get

that the derived systems (Q\ {a},B,) and (Q\{a},By ) are isomorphic.

3. EXAMPLES

The algebraic representative of the unique SQS(8) satisfies the identity

f(ab f(xy.z))=f(f(abx),f(aby)f(abz)) (@
implying that the SQS(8) is homogenous.
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1248 3567
2358 1467
3468 1257
4578 1236
1568 2347
2678 1345
1378 2456
Figure 1: The unique SQS(8)

It is not necessary to check all the g° quintuples to get this result. Namely, this

SQS is a member of the class of Steiner quadruple systems of orders 2"
(constructed by Kirkman) whose corresponding Steiner 3-quasigroups satisfy the
identity

f(xy f(zy.t)=f(f(xy.2).y.t) )
The subvariety of the variety of Steiner 3-quasigroups which is determined by
the above identity is its unique minimal subvariety, i.e. it is the unique atom
in the lattice of all subvarieties of the variety of Steiner 3-quasigroups (see [10]).
Its algebras can easily be obtained from the class of Boolean groups. Given a

Boolean group(S,+) , one needs only to define a ternary operation f on S by
f(abc)=a+b+c.
The main question which arises from this discussion is whether this minimal
subvariety is a proper subvariety of the variety V of Corrolary 2, or the
identities (1) and (2) are equivalent in the variety of Steiner 3-quasigroups.
The second “smallest” SQS is of order 10, and it is also unique (up to an
isomorhism).
1245 1237 1358
2356 2348 2469
3467 3459 3570
4578 4560 1468
5689 1567 2579
6790 2678 3680
1780 3789 1479
1289 4890 2580
2390 1590 1369

1340 1260 2470
Figure 2: The unique SQS(10)
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It is cyclic, which means that it has an automorphism consisting of a single cycle
of length 10. Such an SQS belongs to a class of the so called transitive SQS,
i.e. SQS whose automorphism group acts transitively on the elements. This
class of SQS is precisely the class described in Corrolary 1. According to the
Lemma, the SQS(10) is an example of a homogenous SQS. However, (1) is not
an identity of its corresponding Steiner 3-quasigroup:
f(12f(4,79)="1(121)=2,
but
f(f(124),f(127) f(1,29))=1(538)=L1

This shows that the identity (1) provides sufficient, but not necessary condition
for the induced SQS of a Steiner 3-quasigroup to be homogenous.

4. CONCLUSIONS

Steiner systems and other combinatorial designs have attracted
mathematicians with their uniform distribution of elements into sets for a
long time. Since the first results, a huge progress in combinatorics is made,
but yet, there are so many unanswered questions and open problems.

The algebraic approach in studying Steiner systems contributed a lot in their
understanding in the past 40 years, and the related algebraic structures have
become a non-separating part of the combinatorial research.

The summation of the efforts in resolving the problem of classification of
Steiner quadruple systems according to the number of their pairwise non-
isomorphic derived triple systems is a collection of particular results which are
partial and unsystematic. The research of SQS with a minimal, and SQS with a

maximal possible number of classes of isomorphic DTS, i.e. homogenous and
heterogenous SQS is not completed, as well. It was conjectured that both types
of SQS exist, for every order v=>16.

The result of this paper brings a small contribution to the research of
homogenous SQS, providing a nice description of a specific class of such

SQS.
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ASYMMETRIC INNER PRODUCT AND THE ASYMMETRIC
QUASI NORM FUNCTION

Stela Ceno’, Gladiola Tigno?

Abstract. This paper attempts to generalize the semi scalar product concept
according to G. Lumer by replacing Cauchy inequality with another inequality
which is more generalized. Based on this attempt of generalization it is built a
function which fulfils the conditions which are changed. In this paper it is also
generalized quasi norm function by replacing homogeneity condition with a
more restricted condition by producing this time a more generalized
asymmetric semi norm function. As a result, in this paper it is defined the
asymmetric inner product function and the asymmetric quasi norm function.
Moreover, it is even given relation between these two.

1. INTRODUCTION

Semi-inner products, that can be naturally defined in general Banach spaces
over the real or complex number field, play an important role in describing the
geometric properties of these spaces.

Starting from its axiomatic, many researchers have made various
modifications passing in its generalization. Semi-scalar products mark the very
first generalizations of the scalar product function. The strong bond between
these functions with the norm function has made it possible to obtain a lot of
interesting results which are connected with the orthogonality and convexity
[11.[2].

In [3],[4] it is also generalized the quasi norm function by replacing
homogeneity condition with a more restricted condition by producing this time a

more generalized asymmetric semi norm function.
Letbe py:R—R* afunction defined by:
Po (X) ={

|x], x<0O
2|x|,x=0"

2010 Mathematics Subject Classification. 46B20
Key words and phrases. Quasi norm function, asymmetric quasi inner product,
asymmetric quasi norm function.
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Definition 1. The py: R —R™ function is called an asymmetric semi norm if:
a) po(x)=0 for VxeR.

b)  po(Ax)=Apg(x)for A >0,vxeR

©)  Po(X+Y)<po(X)+po(y) VX yeR.

For every x(x,%)eR?, we define the function p(x)=py(X)+ Po(¥o) .,
where pg (%), Po(Xo) are asymmetric semi normsin R .

Proposition 1. The function p:RxR — R such that p(x) = pg(X) + po(x,) it

is also an asymmetric semi norm in R?.
Proof. a) We have

P(X) = po (%) + Po(Xz) =0, V(x;, Xp) € R? and
P(X)=0=po(x)=0App(X2) =0=x =X =0
b) We have
P(AX) = Po(AX1) + Po(AX2) = Apo(X) + A po(X2)
= ALpo (%) + Po(X2)]=2p(x), for 2>0.
c) We have
P(X+Yy)=Po(X + Y1)+ Po(X2 +Y2)
< Po (X)) + Po (Y1) + Po(X2) + Po(Y2)
=[P (*1) + Po(X2)1+[Po (Y1) + Po(Y2)]
= p(x)+ p(y).
S0 p(x+y) < pO)+p(y), Vx,y e R?.

For every two points x(x;,%o) and y(yj,y,) in R? we build the function
(,):RxR —R such that:

XY X2Y2
p(y)[po(y1) A )] for y; =0andy, =0,
(xy) = p(y) pzl();,ll) , for y; #0andy, =0,
X2Y2 _
PO 5,y for y; =0and y, =0,
0, fory; =0andy, =0.

The function defined above have the following properties:
1) (X,X)=0,V(xq,%p) € R?.
2) For 1>0

% (Ayy) Xz(M’z) XY1) X2Y>
(6 2Y) = PN G + Byl =4 PNty * 7))
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X Y1) X2Y2
AP Po (Y1) Po(Y2)]'

)y | (A%)Y, X1, XY2
()= Pty * a1 = APy oty = A YR A<

3) (x+x,y)=(xy)+(x"y)
Case 1. x=(x,X%p), x':(xi,xlz) and y=(yy,y,) where x3 #0,X, #0,

xi;tO, x'2¢0:

X +X) Vi (X2+X2)Y2]

Con L (
XX y) = PO G+ pe(ya)

_ X1Y1 X1Y1 X2Y2 Xzyz
p(y)[ po(Y1) Po (Y1) * Po(Y2) po()’z)]

_ X1 X2¥2 X1)’1 X2Y2
p(y)[po(Y1) po(Yz)] p(y)[po(Y1) po(Yz)]

= (X% y)+ (X, y).
Case 2. Xx=(x,Xp), X'=(x,0) and y=(y;,y,) where x #0,x, 0,

xi;tO:

*1Y1 XoYo VY Xiyl
. y)=pOI Po (Y1) PO(Y2)] and (x'y) = p(y) Po(¥1)

In this case x+ x'=(x1+xl,x2) therefore:

X+Xg) Y1 %Y ]
Po(¥1) Po (¥2)

_ *1Y1 X2¥2 Xiyl
p(y)[po(Y1) po()’z)]+ p(y) Po(¥1)

=(xy)+(x"y).
The reconciliation (x+x',y)=(x,y)+(x",y) goes equally in these cases:

(x+x,y) = p()L¢

a) x:(xl,xz),x':(o,xlz) and y=(yy,Yp) where x #0,%, #0, x'2 #0

b) x:(xl,O),x‘z(x'l,x'z) and y=(yy,Yy,) Where xl;tO,xi;tO,x'Z #0

c) x=(0,xy), x'=(xi,x'2) and y=(yy,Yp) where x, =0, xi;to x'2 #0
Case 3: x=(x,X9),X"'=(x"1,x'5) and y=(yj,y,) Where x #0, xz #0,
x1¢0 x2 =0 but x1+x1_0 and x2+x2_0 SO xl_—xl and X, =—x 2.

In this case x+ x"'=(0,0) therefore (x+x',y)=0 while:

_ X, Xo¥p _ X XY
) = PO * Botyy = POty * Doty

__ XY Xo¥2 1_ _
= PG * o] =~ Y)

from where: (X,y)+(X,y)=0=(x+X"Yy).
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Case 4: x=(x,Xo), x_(xl,xz) and y=(y;,y,) where x #0,X; #0,
Xl;tO X2¢0 but X1+X1 0 so Xl__l

In this case x+Xx'=(0,X, + x'2) therefore:

(X2+X2)YZ p(y) X2Y2 +p(y) XI2y2

(x+x,y)=p(y)

Po(Y2) Po(Y2) Po(Y2)
while:
_ *1Y1 X2Y2
(x,y)= p(y)[pO(Y1) po(Yz)]
and

B Y1 X2 W, %Yo
(<. y) = p(y)[po(yl) po(yz)] p(y)[po(yl) po(Yz)]

X2¥2 Xzyz
Po(Y2) Po(Y2)

It is equally demonstrated when: x = (%, X5), X _(xl,xz) and y=(y1,Y2)

Since, from (x,y) +(x",y) = p(y) +p(y) =(x+x.y).

where Xl;tO Xo #0, Xl;tO X2 =0 but X +X2 =0 so Xo =— 2.
4) From the definition of the function

x|, x<0
po(X)_{Z|x|,x20

we obtain the inequality: | x|< pg(X) , VX € R?, from where:

| % [< Po (XA %2 [€ Po(X2),] Y1 I< Po (YA Y2 1€ Po(Y2)
brings:

il 1Yol
|0 Y) I PO | s+ % | ores]

= P x¢ [+ %2 [1< p(Y)[ Po (1) + Po(X2)]
= p(y) p(x) = p(x) p(y).
So [ (X, y) £ p(X) p(y), from where (x,x) = (x,X) |< pz(x).

Remark. For (x,X) where x(xl,xz)eIR2 we have:
1) x #0,% #0= p(x) =0, p(x2)¢0:>
bl Il
() = POy + Po00) T P

< pO)[Po(x) + Po(X2)]= P 2(x).
2) X #0,%=0= p(x) =0, p(xz)—0:>

22 1= p(ol

(%) = PO) gty =% < P (X) = P (%)
3) X =0,%#=0=p(x)=0,p(x;)=0
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(X,%) = p(x) =X, [°< p3(x) = p2(x)

Po (X)
4) % =0,% =0= p(x)=p(Xx) =0=p(x)=0 =(x,x)=0= p2(x)

Finally:| (x,X) | p?(X) .
Remark. Frankly, (x,x)= p?(x) every time is not true. Because for x =(-1,2)
we have p(x)=| 1|+2|2|—5:» p2(x)=25 and other side:
(
(X X) p(X)[ (Xl) pO(XZ)] 5[ 2|2|] 5[1+1] 10.

In this case (x, ) = p(X).

Record 1. Also we can prove that p2 (X) <2(x,X).
Proof. Case 1: For x(xl,xz) eR? where X <0A Xy <0 we have:
_ bl |X2|

(%0 = PO + 2251 = PO + 21— bl + 3 1= P00 OY)
or p (x):(x,x)sZ(x,x)
Case 2: For x(xl,xz) eR? where X, >0 A Xy >0we have:

(x,x) = p(x)[p (Xl) po(Xz)]

Sop (x) =2(x,X).

Case 3: For x(xq,X2) eR? and xl >0A Xy <0 [¥ <OA X, >0] we have:

2
PO + 2= ot by - 2700,

[l |X2|

(%) = POy * pfxg)] PO+

= POOLEL+ 1y 12 PO+ by = 20
S0 p2(X) <2(X, X).
Record 2. The function (x,y) defined as above provides the benefit of the

function p:RxR—R such that: p(x)=1/(x,x) .
From the inequality: pz(x) <2(x, x)we have
—2
p?(x)<2p"(x) or p (N <V2p (),
and from the inequality |(x,y)|< p(x)p(y) we have:

06y < PCOP(Y) <V2p (ON2p(y) =2p(X) p(Y) .
So for the function p:[RxR — R these properties hold:
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1) p(x)=0,p(x)=0=>x=0 for xecR?
2) p(Ax)=Ap(x), for 1>0, xeR?
3) for X,yeRZZ

_pZ(X+y)=| X+ Y, X+ V) I (X, x+y) [+] (Y, x+Y)]
<2p(X)p(x+Yy)+2p(y) p(x+Yy)
=2p(x+ y)[p(x)+ p(y)]
So p(x+Y)<2[p(x)+ p(y)], for x,y e R?.

2. MAIN RESULTS

Definition 2. The function () X x X — R ,where X is a vectorial space, it is

called the asymmetric quasi inner product if:
a) (x,x)>0,vxeX

b) (Ax,y)=A(X,Y),V(X,y)e X2 and VieR

(X, Ay) = A(X, y), ¥(x,y) e X?and 1 >0
) (X+x,yY)=(Xy)+(X+Yy),Vx,x,yeX
d) o6y <k x)(y,y), for k=1.

Definition 3. The function p: X — R™ it is called the asymmetric quasi norm

function if:
a) p(x)=0,vxeX
b) p(Ax)=Ap(x),vxe X and 1>0

c) p(x+y)<k[p(X)+p(Y)],V(xy)e X2 and k>1.

Proposition 2. If (x,y) is the asymmetric quasi inner product function on X ,

then the functionE: X — Rsuch that [_J(X):«/(x,x) is an asymmetric quasi

norm function.
Proof. 1) We have

p(x) =+/(x,x) 20, Vx e X

_p(ﬁx) = a/(/‘tx,/‘tx) =«f/12(x, X),for 2>0.
P(AX) =|A|J(x,¥) = 2p(x) .

2) We have

Therefore
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3) We have
pO(xky) =[x+ y.x+ )]

=[x x+y)+(y,x+Y)|

<|(x, x4 Y)| +|(y, x+y)|

< KOG X+ Y, X+ Y) 4K (Y, Y)(X+ Y, X+ Y)

=k p(x)p(x+y) + k' p(Y)p(x +Y)

=k p0) + p(y) [ px+y).
From where: p(x+Yy) < \/F[_p(x) +E(y)] and if we denote k' =k >1 we
have:

p(x+Yy) <K[p(x)+ p()].
3. CONCLUSIONS

An asymmetric quasi norm function can be obtained by an asymmetric inner
product function, and the link between them is the function: p: X — R, so that

PO)=06%)
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